Автоматизированный электропривод курс лекций. Автоматизированный электропривод

В предлагаемом вашему вниманию учебном пособии учебном пособии речь пойдет об основах электрического привода и наиболее перспективном его виде - асинхронном частотно-регулируемом электроприводе. Пособие предназначено для работников занимающихся продвижением на рынок сложной электротехнической продукции, какой является автоматизированные электроприводы и для студентов электротехнических специальностей.

Лектор: Онищенко Георгий Борисович. Доктор технических наук, профессор. Действительный член Академии электротехнических наук РФ.

В серии видеолекций рассмотрены следующие вопросы:

1. Функции и структура автоматизированного электропривода.

2. Общая характеристика регулируемого электропривода.

3. Принцип работы асинхронного двигателя.

4. Частотное регулирование скорости асинхронного двигателя.

5. Силовые управляемые полупроводниковые приборы.

6. Структурная схема преобразователя частоты.

7. Автономный инвертор напряжения. Принцип широтно-импульсной модуляции.

8. Выпрямитель и звено постоянного тока в составе преобразователя частоты.

9. Структурные схемы регулирования частотно-регулируемого электропривода.

10. Особенности высоковольтных преобразователей частоты.

11. Области применения частотно-регулируемого электропривода.

Рассмотрение данных вопросов позволит получить достаточно полное представление о составе, принципах работы, схемном построении, технических характеристиках и областях применения частотно-регулируемого асинхронного электропривода.

Лекция 1. Функции и структура автоматизированного электропривода

Задачи первой лекции дать представление о роли и значении автоматизированного электропривода в современном промышленном производстве и в электроэнергетической системе страны.

Лекция 2. Регулируемый электропривод - основной вид современного электропривода

Рассмотрены общие вопросы связанные с созданием и использование регулируемых электроприводов.

Лекция 3. Принцип работы асинхронного электродвигателя

Конструктивные особенности и основные характеристики наиболее распространенных электрических машин - асинхронных двигателей. Эти двигатели широко используются в промышленности, сельском и коммунальном хозяйстве и других областях. Диапазон мощностей выпускаемых асинхронных двигателей очень широк - от сотен ватт до нескольких тысяч киловатт, но принцип работы этих машин один для всех габаритов и модификаций.

Лекция 4. Частотное регулирование скорости асинхронного двигателя

Наиболее эффективным способом регулирования скорости асинхронного двигателя является изменение частоты и амплитуды трехфазного напряжения, прикладываемого к обмоткам асинхронного двигателя. Этот способ регулирования в последние годы получил самое широкое применение для электроприводов различного назначения, как низковольтных с напряжением до 400 В, так и высоковольтных большой мощности напряжением 6,0 и 10,0 кВ.

В настоящем разделе излагаются принципы регулирования скорости двигателя посредством изменения частоты подводимого напряжения, приводятся возможные алгоритмы изменения не только частоты, но и амплитуды напряжения и анализируются характеристики привода, получаемые при частотном способе регулирования.

Лекция 5. Принцип работы и структура преобразователя частоты

Создание и серийное производство полностью управляемых силовых полупроводниковых приборов оказало революционизирующее воздействие на развитие многих видов электрооборудования, прежде всего, на электрический привод. К новым полностью управляемым полупроводниковым приборам относятся биполярные транзисторы с изолированным затвором (IGBT) и запираемые тиристоры с комбинированным управлением. На их основе стало возможным создание преобразователей частоты для питания двигателей переменного тока и плавного регулирования их скорости вращения. В данном разделе рассмотрены характеристики новых силовых полупроводниковых приборов и приведены их параметры.

Лекция 6. Скалярные системы управления электродвигателем

Для электроприводов, работающих с ограниченным диапазоном регулирования скорости и в тех случаях, когда не требуются высокие показатели по быстродействию и точности регулирования применяются более простые скалярные системы регулирования, которые рассматриваются в данном разделе.

Модуль № 7 "Векторное управление частотно-регулируемыми электроприводами"

Векторное управление асинхронным двигателем базируется на достаточно сложных алгоритмах, отражающих представление электромагнитных процессов в двигателе в векторной форме. В настоящей лекции мы постараемся изложить основы векторного управления несколько упрощенно, избегая сложных математических выкладок.

Скоро будет продолжение!

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ СТАВРОПОЛЬСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ

АВТОМАТИЗИРОВАННЫЙ ЭЛЕКТРОПРИВОД

КУРС ЛЕКЦИЙ

для специальности 110302.65 – «Электрификация и автоматизация сельского хозяйства» очной и заочной формы обучения

Автоматизированный электропривод: Курс лекций \ Сост. И.В.Атанов. – Ставрополь: СтГАУ, кафедра ПЭЭСХ, 2008. - 124 с.

Данное учебное пособие состоит из лекций по автоматизированному электроприводу в соответствии с государственным стандартом высшего профессионального образования по направлению 660300 – Агроинженерия.

Курс лекций предназначен для студентов очной и заочной формы обучения специальности 110302.65 – «Электрификация и автоматизация сельского хозяйства» и может использоваться, как на учебных занятиях, так и при самостоятельной работе студентов.

ВВЕДЕНИЕ

Курс лекций разработан для подготовки специалистов по специальности 110302.65 – «Электрификация и автоматизация сельского хозяйства» по направлению 660300 – «Агроинженерия».

Лекционный материал содержит 15 лекций по дисциплине «Автоматизированный электропривод» и базируется на двух предыдущих курсах «Основы электропривода» и «Электропривод с.-х. машин».

Особое внимание при изложении материала уделено средствам и системам регулирования координат электроприводов постоянного и переменного тока.

При изложении материала использованы различные шрифты и выделения, которые позволили структурировать материал, облегчить его усвоение.

Важным элементом изучения учебного материала является система сокращений терминов, определений часто встречающихся по тексту. Данные сокращения вводятся и расшифровываются по мере первого упоминания.

Представленный лекционный материал основывается на многочисленных литературных источниках, основные из которых приведены в данном пособии, в разделе литература.

www.privod.ru www.owen.ru www.kipservis.ru

Лекция №1 Классификация, структура автоматизированных

электроприводов (АЭП)

2) Структура автоматизированного электропривода (АЭП)

3) Коэффициент полезного действия АЭП

4) Достоинства АЭП

1 Классификация электроприводов

В зависимости от выполняемых функций, вида и числа регулируемых координат, степени автоматизации технологических процессов реализация ЭП может быть самой разной (рисунок 1).

Неавтоматизированный

Автоматизированный

Разомкнутый Замкнутый

Рисунок 1 - Классификация ЭП

Неавтоматизированные ЭП - управление с помощью оператора, который осуществляет пуск, остановку, изменение скорости, реверсирование ЭП в соответствии с заданным технологическим циклом.

Автоматизированный ЭП - операции управления выполняются в соответствии с требованиями технологического процесса. Операции выполняются системой управления (на оператора возлагаются функции включения и выключения ЭП). Очевидно, что автоматизированный ЭП является более эффективным и экономически целесообразным, т.к. освобождает человека от утомительного и однообразного труда, повышает производительность труда, качество технологического процесса.

Разомкнутый ЭП - характеризуется тем, что все внешние воздействия (например, момент инерции) влияют на его входную координату, например скорость. Данный вид ЭП отличается простотой и применяется в основном для пуска, торможения и реверса двигателей.

Замкнутые ЭП - отличительной особенностью является полное или частичное устранение влияния внешнего воздействия на регулируемую координату, например скорость. Схемы как правило сложные.

Регулирование по возмущению - дополнительный сигнал, пропорциональный возмущению подаётся на вход ЭП вместе с сигналом задания, в результате суммарный сигнал обеспечивает управление ЭП. Данное регулирование не нашло должного применения из-за сложности реализации датчиков возмущающих воздействие в частности момента нагрузки – Мс

Регулирование по принципу отклонения (принцип обратной связи) - характеризуется наличием цепей обратной связи. Информация о регулируемой координате подаётся на вход ЭП в виде сигнала обратной связи, который сравнивается с задающим сигналом и полученный результирующий сигнал (рассогласования, отключения, ошибки) является управляющим сигналом для ЭП (рис.2). Обратные связи могут быть положительными и отрицательными, линейными и нелинейными, жесткими и гибкими и др.

К ос

Рисунок 2-Замкнутые структуры АЭП с компенсацией по возмущению (а), с обратной связью (б)

Положительной называется такая обратная связь, сигнал которой направлен согласно (т.е складывается) с задающим сигналом.

Отрицательная ОС - сигнал ОС направлен встречно задающему сигналу. Жесткая ОС - действует, как в установившемся, так и переходном режи-

Гибкая ОС - действует только в переходных режимах.

Линейная ОС - характеризуется пропорциональной зависимостью между регулируемой координатой и сигналом ОС.

Нелинейная ОС - данная зависимость не линейна.

2 Структура АЭП

Автоматизированным электроприводом называют электромеханическую систему, состоящую в общем виде из электродвигательного, преобразовательного, передаточного и управляющего устройств и предназначенную для приведение в движение исполнительных органов рабочих машин и управления этим движением (рисунок 3).

Источник электрической энергии (ИЭЭ)

Преобразователь- ное устройство

Uд ,Iд ,fд

Управляющее

Электродвига-

устройство (УУ)

тельное устрой-

Мд , ωд

Fд , Vд

обратные

Передаточное

устройство (ПРД)

Мм (Fм ), ωм (Vм )

Потребитель механической энергии (ПМЭ)

Рисунок 3 – Структурная схема АЭП

Основное назначения АЭП - преобразование электроэнергии в механическую энергию исполнительных органов машин и механизмов. В отдельных случаях (генераторный режим, торможение) возможно и обратное преобразование.

На долю АЭП приходится 60% вырабатываемой в стране электроэнергии.

На рисунке 3 представлены:

потоки электрической энергии - , потоки механической энергии - ;

ПРБ - преобразовывают эл.энергию в необходимый вид (магнитные пускатели, тиристорные коммутаторы, регуляторы, преобразователи и т.д.);

ПРДпреобразовывают механическую энергию в необходимый вид для потребителя механической энергии (ПМЭ) (муфты, шкивоременные передачи, редукторы и т.д.);

УУ - информационная часть (микропроцессорные средства, микроЭВМ).

3 Коэффициент полезного действия АЭП

Как и для всякого электромеханического устройства, важным показателем является коэффициент полезного действия

АЭП= ПРБ· ЭД· ПРД,

т.к. коэффициент полезного действия ПРБ и ПРД ≈1 и мало зависит от нагрузки, то АЭП определяется ЭД , которое также является достаточно высоким и при номинальной нагрузки составляет 60-95%.

Малое КПД соответствует тихоходным двигателям малой мощно-

При повышении мощности выше 1кВт ЭД и соответственно АЭП превышает 70%.

4 Достоинства АЭП

1) низкий уровень шума при работе;

2) отсутствие загрязнения окружающей среды;

3) широкий диапазон мощностей и угловых скоростей вращения;

4) стабилизация выходной координаты;

5)доступность регулирования угловой скорости вращения и соответственно производительности технологической установки; 6)относительная простота автоматизации, монтажа, эксплуатации по срав-

нению с тепловыми двигателями, например, внутреннего сгорания, а также гидро и пневмоприводами.

Лекция 2 Регулирование координат ЭП

1) Показатели регулирования скорости ЭП

2) Регулирование момента, тока, положения ЭП

3) Способы регулирования частоты вращения ДПТ

4) Способы регулирования частоты вращения АД

1 Показатели регулирования скорости ЭП

Для обеспечения требуемых режимов работы машин, производственных механизмов и самого ЭП некоторые переменные, которые характеризуют их работу, должны регулироваться. Такими переменными, часто называемыми в ЭП координатами, являются, например, скорость, ускорение, положение исполнительного органа (ИО) или любого другого механического элемента привода, токи в электрических цепях двигателей, моменты на их валу и др.

Типичным примером необходимости регулирования координат может служить ЭП пассажирского лифта. При пуске и остановке кабины лифта для обеспечения комфортности пассажиров ускорение и замедление ее движения ограничиваются. Перед остановкой скорость кабины должна снижаться, т. е. регулироваться. И, наконец, кабина с заданной точностью должна останавливаться на требуемом этаже. Такое управление движением кабины лифта обеспечивается за счет регулирования соответствующих координат (переменных) ЭП лифта.

Процесс регулирования координат всегда связан с получением искусственных (регулировочных) характеристик двигателя, что достигается целенаправленным воздействием на двигатель.

Регулирование скорости ЭП.

Регулирование скорости движения исполнительных органов требуется во многих рабочих машинах и механизмах - прокатных станах, подъем- но-транспортных механизмах, горнодобывающих и бумагоделательных машинах, металлообрабатывающих станках и др. С помощью ЭП обеспечиваются регулирование и стабилизация скорости движения их ИО, а также изменение скорости ИО в соответствии с произвольно изменяющимся задающим сигналом (слежение) или по заранее заданной программе (программное движение). Рассмотрим, каким образом с помощью ЭП можно обеспечивать регулирование скорости ИО рабочих машин.

Как следует из обшей схемы ЭП (лекция 1), скорость двигателя и ИО при его вращательном (поступательном) движении связаны между собой соотношениями

Анализ выражения показывает, что регулировать скорость движения ИО можно воздействуя или на механическую передачу (i - передаточное отношение редуктора), или на двигатель, или на то и другое одновременно.

В первом случае воздействие заключается в изменении передаточного числа или радиуса приведения механической передачи при постоянной скорости двигателя, поэтому этот способ регулирования получил название механического. Для его реализации используются коробки передач (при ступенчатом регулировании), вариаторы и электромагнитные муфты (для плавного регулирования). Применяется механический способ ограниченно из-за сложности автоматизации таких технологических процессов, малого набора регулируемых механических передач указанного типа и их невысоких показателей надежности и экономичности.

Способ регулирования скорости ИО, получивший название электрического, предусматривает воздействие на двигатель при неизменных параметрах механической передачи. Этот способ нашел широкое применение в современных ЭП вследствие его больших регулировочных возможностей, простоты, удобства использования в общей схеме автоматизации технологических процессов и экономичности.

Комбинированный способ регулирования скорости ИО применяется ограниченно в основном в ЭП металлообрабатывающих станков.

Итак, управление движением исполнительных органов современных рабочих машин и механизмов в большинстве случаев достигается за счет целенаправленного воздействия на электродвигатель с помощью его системы управления с целью получения соответствующих искусственных характеристик.

Для примера на рисунке 1 показаны естественная механическая характеристика 1 двигателя постоянного тока независимого возбуждения (ДПТ НВ) и две искусственные - при введении в цепь якоря добавочного резистора с сопротивлением (прямая 2) и уменьшении подаваемого на якорь напряжения (прямая 3). Обе эти искусственные характеристики обеспечивают при моменте нагрузки Мс снижение скорости до требуемого уровня. Увеличение скорости ДПТНВ выше номинальной может быть получено за счет уменьшения его магнитного потока.

Для количественной оценки и сопоставления различных способов регулирования скорости используются следующие показатели.

Диапазон регулирования скорости, определяемый отношением

максимальной скорости к минимальной, т.е. D max . Нижний предел,

как правило ограничен перегрузочной способностью и жесткостью характеристик.

В соответствии с рисунком 1 диапазон регулирования будет определяться отношением частот вращения при заданном моменте нагрузки Мс .

Мс

ω ном

ωи

Рисунок 1 – Варианты регулирования частоты вращения ДПТ НВ

Стабильность скорости , характеризуемая изменением скорости при возможных колебаниях момента нагрузки на валу двигателя и определяемая жесткостью его механических характеристик. Чем она больше, тем стабильнее скорость при изменениях момента нагрузки, и наоборот. В рассматриваемом примере большая стабильность обеспечивается при искусственной характеристике 3.

Плавность регулирования скорости, определяемая перепадом ско-

рости при переходе с одной искусственной характеристики на другую. Чем больше в заданном диапазоне регулирования скорости может быть получено искусственных характеристик, тем плавнее будет происходить регулирование скорости.

Направление регулирования скорости. В зависимости от способа воздействия на двигатель и вида получаемых искусственных характеристик его скорость может увеличиваться или уменьшаться по сравнению с работой на естественной характеристике при данном моменте нагрузки. В первом случае говорят о регулировании скорости вверх от основной характеристики, во втором - вниз. Можно сказать, что регулирование скорости вверх связано с получением искусственных механических характеристик, располагающихся выше естественной, а регулирование скорости вниз обеспечивается характеристиками, располагающимися ниже естественной.

Допустимая нагрузка двигателя. Электрический двигатель рассчитывается и проектируется таким образом, чтобы, работая на естественной характеристике с номинальными скоростью, током, моментом и мощностью, он не нагревался выше определенной температуры, на которую рассчитана его изоляция. В этом случае срок его службы является нормативным и составляет обычно 15...20 лет.

Поскольку потери энергии при нагреве двигателя пропорциональны квадрату тока, нормативный нагрев будет иметь место при протекания но-

S=UI
P=Mω
Н.И. Усенков. Электриче
ский привод

Н.И. Усенков. Электриче
ский привод

Н.И. Усенков. Электриче
ский привод

Н.И. Усенков. Электриче
ский привод

Введение

1.1.Определение понятия «Электрический
привод»
Электропривод
это управляемая электромеханическая
система. Ее назначение преобразовывать электрическую энергию
в механическую и обратно и управлять этим процессом.
Электропривод имеет два канала силовой и информационный
(рисунок
1.1).
По
первому
каналу
транспортируется
преобразуемая
энергия, по второму каналу осуществляется
управление потоком энергии, а также сбор и обработка сведений о
состоянии и функционировании системы, диагностика ее
неисправностей.
Силовой канал состоит из двух частей
электрической и
механической и обязательно содержит
связующее звено
электромеханический преобразователь.
Н.И. Усенков. Электриче
ский привод

Рисунок 1.1. Общая структура электропривода

АСУ верхнего уровня
Каналы связи
ИП
Сеть
ЭП
канал
электропривода
ЭМП
МП
Рабочий
орган
Электрическая часть
Механическая часть
Силовой канал электропривода
Н.И. Усенков. Электриче
ский привод
Технологическая установка
Система
электроснабжения
Информационный

В электрическую часть силового канала электропривода
входят электрические преобразователи ЭП, передающие
электрическую энергию от источника питания ИП к
электромеханическому преобразователю ЭМП и обратно и
осуществляющие преобразование параметров электрической
энергии.
Механическая
часть
электропривода
состоит
из
подвижного органа электромеханического преобразователя,
механических передач МП и рабочего органа установки, в
котором полезно реализуется механическая энергия.
Электропривод
взаимодействует
с
системой
электроснабжения (или источником электрической энергии),
технологической установкой и через информационный
преобразователь ИП с информационной системой более
высокого уровня.
Электрический
привод
используется
в

хозяйстве.
Широкое
распространение
электропривода
Н.И. Усенков. Электриче
обусловлено
особенностями
электрической
энергии:
ский привод

Электрический привод один из самых энергоемких
потребителей и преобразователей энергии. Он потребляет
более 60% всей производимой электроэнергии.
Электрический
привод
широко
используется
в
промышленности, на транспорте и в коммунальном
хозяйстве.
Электрический
привод
один
из
самых
энергоемких потребителей и преобразователей энергии.
Теория
регулируемого
электропривода
получила
интенсивное развитие благодаря
усовершенствования
традиционных и созданию новых силовых управляемых
полупроводниковых приборов (диодов, транзисторов и
тиристоров), интегральных схем, развитию цифровых
информационных технологий и разработке разнообразных
систем микропроцессорного управления.
Владение
теорией
в
области
регулируемого
электропривода
является
одной
из
важнейших
составляющей профессиональной подготовки специалистов
Н.И. Усенков. Электриче
направления «Электротехника,
энергетика и технология
ский привод

1.2. Состав и функции электропривода

Функция
электрического
преобразователя
ЭП
состоит
в
преобразовании электрической энергии, поставляемой сетью С и
характеризуемой напряжением Uс и током Iс сети, в электрическую
же энергию, требуемую двигателем и характеризуемую величинами
U, I.
Преобразователи бывают неуправляемыми и управляемыми. Они
могут иметь одностороннюю (выпрямители) или двухсторонюю (при
наличии
двух
комплектов
вентилей)
проводимость,
При
односторонней проводимости преобразователя и обратном (от
нагрузки) потоке энергии используется дополнительный ключевой
элемент на транзисторе для «слива» энергии в тормозном режиме
электропривода.
Электромеханический преобразователь ЭМП (двигатель), всегда
присутствующий в электроприводе, преобразует электрическую
энергию (U, I) в механическую (M,ω).
Механический преобразователь МП (передача): редуктор, пара
винтгайка, система Н.И.
блоков,
Усенков.кривошипно
Электриче шатунный механизм
осуществляют согласование
момента М и скорости ω двигателя с
ский привод

Рисунок 1.2. Энергетический канал электропривода
P2
P1
Сеть
ΔPс
ΔPэ
Uс, I с
ΔPr
ΔPм
ΔPэм
U, I
Mм, ω м
M, ω
ЭМП
ЭП
Δ Pро
МП
ΔPr
Н.И. Усенков. Электриче
ский привод
РО

Величины,
характеризующие
преобразуемую
энергию:
напряжения, токи моменты (силы) скорости положение вала в
пространстве, называют координатами электропривода.
Основная функция электропривода состоит в управлении
координатами, то есть в их принудительном направленном
изменении в соответствии с требованиями технологического
процесса.
Управление координатами должно осуществляться в пределах,
разрешенных
конструкций
элементов
электропривода,
чем
обеспечивается надежность работы системы. Эти допустимые
пределы обычно связаны с номинальными значениями координат,
обеспечивающими оптимальное использования оборудования.
Н.И. Усенков. Электриче
ский привод

Автоматизированный
электропривод
(АЭП)
это
электромеханическая система, состоящая из электрической
машины ЭМ, связанной посредством механической передачи
ПУ с рабочим механизмом РМ, силового преобразователя СП,
системы управления СУ, блока сенсорных устройств БСУ,
которые выполняют роль датчиков обратной связи по
основным
переменным
состояния
ЭП
(параметры:
положения вала рабочей машины, угловая скорость, момент,
ток двигателя) и источников питания, обеспечивающих
питание указанных электротехнических устройств.
Полупроводниковые
СП
служат
для
согласования
электрических
параметров
источника
электрической
энергии
(напряжение,
частота)
с
электрическими
параметрами машины ЭМ и регулирование ее параметров
(скорость, напряжение и изменение направления вращения
Н.И. Усенков. Электриче
ский привод

Рисунок 1.3. Блок схема автоматизированного
электропривода
Источник питания
Сигнал
задания
ЭМ
СУ
СП
БСУ
ПУ
РМ
Информационный канал ЭП
Электрическая часть ЭП
Н.И. Усенков. Электриче
ский привод
Механическая часть ЭП

Система управления предназначена для управления
силовым преобразователем и строится, как правило, на
микросхемах, либо микропроцессоре. На вход системы
управления
подается
сигнал
задания
и
сигналы
отрицательных обратных связей от блока сенсорных
устройств.
Система
управления,
в
соответствии
с
заложенными в нее алгоритмом, вырабатывает сигналы
управления силовым преобразователем, управляющего
электрической машиной.
Наиболее
совершенным
электроприводом
является
автоматизированный
электропривод
регулируемый
электропривод
с
автоматическим
регулированием
переменных состояния.
Н.И. Усенков. Электриче
ский привод

Автоматизированный электропривод делится на:
Стабилизированный по скорости или моменту ЭП;
Программно управляемый ЭП, осуществляющий перемещение
рабочего механизма в соответствии с программой, заложенной в сигнал
задания;
Следящий ЭП, осуществляющий перемещение рабочего механизма в
соответствии с произвольно изменяющимся входным сигналом
Позиционный
ЭП,
предназначенный
регулирования положения рабочего механизма
Н.И. Усенков. Электриче
ский привод
для

Н.И. Усенков. Электриче
ский привод

Электропривод на основе двигателей постоянного
тока
используется
в
различных
отраслях
промышленности:
металлургии,
машиностроении,
химической, угольной, деревообрабатывающей и др.
Регулирование
угловой
скорости
двигателей
постоянного
тока
занимает
важное
место
в
автоматизированном электроприводе. Применение с
этой целью тиристорных преобразователей является
одним из современных путей создания регулируемого
электропривода постоянного тока.
Н.И. Усенков. Электриче
ский привод

Управление скоростью ДПТ с НВ осуществляется тремя
способами:
1.Изменением напряжения на якоре двигателя при неизменном токе в обмотке
возбуждения;
2.Изменением тока в обмотке возбуждения двигателя при неизменном
напряжении на якоре;
3.Комбинированным изменением напряжения на якоре двигателя
обмотке возбуждения.
и тока в
Напряжение на якоре двигателя или ток в обмотке возбуждения изменяют с
помощью управляемых выпрямителей, из которых наибольшее применение
получили однофазные и трехфазные мостовые выпрямители.
При управлении двигателем по цепи обмотки возбуждения управляемый
выпрямитель выполняется на меньшую мощность и обладает лучшими массогабаритными и стоимостными показателями.
Н.И. Усенков. Электриче
ский привод

Однако вследствие большой постоянной времени
обмотки возбуждения электропривод обладает худшими
динамическими
свойствами
(является
менее
быстродействующим), чем по цепи якоря двигателя. Таким
образом,
выбор
цепи
управления
определяется
конкретными требованиями к приводу.
При работе с производственными механизмами
(например, механизмы главной и вспомогательной
передач в обрабатывающих станках, крановые механизмы,
лифты) необходимо изменять направление вращения
двигателя
(осуществлять
реверс).
Изменению
направления вращения обычно сопутствуют такие
требования, как быстрое (и в то же время плавное)
торможение и плавный набор скорости.
Н.И. Усенков. Электриче
ский привод

Реверс направления вращения приводного двигателя может достигаться
изменением полярности подводимого к якорю напряжения либо изменением
направления тока в обмотке возбуждения. С этой целью в цепь якоря или
обмотки возбуждения вводят контактный переключатель (реверсор) или
используют два управляемых тиристорных преобразователя.
Структурная схема реверсивного тиристорного преобразователя с
контактным переключателем в цепи обмотки якоря показана на рисунке. В
этой схеме, как и в большинстве преобразователей, предназначенных для
электропривода, режим выпрямления чередуется с режимом инвертирования.
Так, например, при наборе скорости в режиме пуска и ее стабилизации в
условиях
повышения
нагрузки
на
валу
двигателя
тиристорный
преобразователь работает в режиме выпрямления, сообщая энергию
двигателю. При необходимости торможения и последующего останова
двигателя поступление энергии к нему от сети через преобразователь
прекращают,
Н.И. Усенков. Электриче
ский привод

Переводя
двигатель в режим инвертирования.
Машина постоянного тока под действием инерционной
массы на ее валу переходит в режим генератора,
возвращая накопленную энергию через преобразователь
в сеть переменного тока (рекуперативное торможение).
Блок-схема реверсивного преобразователя
Сеть
380 B, 50 Гц
Uсинхр
VS1
UZ1
VS6
СИФУ
Uо.с
1
Id1
2
QS1
Udα
1
2
Id2
M1
LM1
Н.И. Усенков. Электриче
ский привод
Uз.с

Н.И. Усенков. Электриче
ский привод

Система «Тиристорный преобразователь-двигатель»

Основным типом преобразователей, применяемых в регулируемых
ЭП постоянного тока, являются полупроводниковые статические
преобразователи (транзисторные и тиристорные). Они представляют
собой управляемые реверсивные или нереверсивные выпрямители,
собранные по нулевой или мостовой однофазной или трехфазной
схемам. Силовые транзисторы, применяются в основном для
импульсного регулирования напряжения в ЭП небольшой мощности.
Принцип действия, свойства и характеристики системы ТП - Д
рассмотрим на примере схемы, приведенной на рис. 2.
Н.И. Усенков. Электриче
ский привод

à)
á)
~ U1
i1
T1
e2.1
VS1
Ud
+
M2
+
Ia1
Id
UÓ1

2
e2.2
LM
3
VS2
I
0
L
1
Ia2
4
5
6
UÓ2
Ñ È Ô Ó

Рисунок
2
Н.И. Усенков.
Электриче
ский привод
7
M

Управляемый выпрямитель (преобразователь) включает в себя
согласующий трансформатор Т, имеющий две вторичные обмотки,
два тиристора VS1 и VS2, сглаживающий реактор с
индуктивностью L и систему импульсно-фазового управления
СИФУ. Обмотка возбуждения двигателя ОВМ питается от своего
источника.
Выпрямитель обеспечивает регулирование напряжения на
двигателе за счет изменения среднего значения своей ЭДС ЕП. Это
достигается с помощью СИФУ, которая по сигналу UУ изменяет
угол управления тиристорами α (угол задержки открытия
тиристоров VS1 и VS2 относительно момента, когда потенциал на
их анодах становится положительным по сравнению с
потенциалом на катоде). Когда α = 0, т.е. тиристоры VS1 и VS2
получают импульсы управления Uα от СИФУ в указанный момент,
преобразователь осуществляет двухполупериодное выпрямление
и на якорь двигателя подается полное напряжение. Если с
помощью СИФУ подача импульсов управления на тиристоры VS1 и
VS2 происходит со сдвигом (задержкой) на угол α ≠ 0, то ЭДС
преобразователя снижается, а следовательно, уменьшается
среднее напряжение, подводимое к двигателю.
Н.И. Усенков. Электриче
ский привод

Зависимость среднего значения ЭДС многофазного преобразователя
от угла управления тиристорами а имеет вид:
(1)
ECP Emax m sin m cos ECP 0 cos
где m - число фаз;
Е - амплитудное значение ЭДС преобразователя;
ЕСР0 - ЭДС преобразователя при α = 0.
Для уменьшения вредного влияния пульсации тока в цель якоря
обычно включается сглаживающий реактор, индуктивность L которого
выбирается в зависимости от допустимого уровня пульсации тока.
Уравнения для электромеханической и механической характеристик
двигателя:
(2)
(3)
ECP 0 cos k I RЯ RП k
ECP 0 cos
k M RЯ

k 2
где
- эквивалентное сопротивление
RП xT m 2 RT RL
преобразователя;
xT, RT - соответственно приведенные ко вторичной обмотке
индуктивное сопротивление рассеяния и активное сопротивление
обмоток трансформатора;
RL - активное сопротивление сглаживающего реактора.
Н.И. Усенков. Электриче
ский привод

В заштрихованной области двигатель работает в режиме
прерывистого тока, что определяет заметное изменение (уменьшение)
жесткости характеристик. Вследствие односторонней проводимости
преобразователя характеристики располагаются только в первом
(1 ...3 при α = 0; 30, 60°) и четвертом (4...7 при α = 90, 120, 150, 180°)
квадрантах. Меньшим углам управления соответствует большая ЕП и,
следовательно, более высокая скорость двигателя; при α = π/2 ЭДС
УВ ЕП = 0 и двигатель работает в режиме динамического торможения.
На рис. 3 приведена схема ЭП с трехфазным мостовым
нереверсивным УB.
Н.И. Усенков. Электриче
ский привод

~ 380 Â; 50 Ãö
T1


Ñ
È
Ô
Ó
U
VS1
+
VS6
VS1
VS4
VS3
VS6
VS5
VS2
Ud
L
Id
M1
+
LM
-
UB
Н.И. Усенков.
Электриче
Рисунок
3
ский привод
-

Для получения характеристик двигателя во всех четырех
квадрантах используются реверсивные управляемые выпрямители,
которые состоят из двух нереверсивных выпрямителей, например с
нулевым выводом рис. 4.
а)
~ 380 В; 50 Гц
б)
T1
2

U

С
И
Ф
У
VS1
+
VS6
VS1
VS4
VS3
VS6
VS5
VS2
L1
-
2
L
1 min
0
min
M
1 2
1 max
M1
UB
2 2
L2
+
max
-
Н.И. Усенков.
Электриче
Рисунок
4
ский привод

Реверсивными
называются
преобразователи,
позволяющие
изменять полярность постоянного напряжения и тока в нагрузке.
В реверсивных УВ используются два основных принципа
управления комплектами вентилей: совместное и раздельное.
Совместное управление предусматривает подачу от системы
импульсно-фазового управления тиристорами импульсов управления
Uα одновременно на тиристоры обоих комплектов – VS1, VS3, VS5
(катодная группа) и VS2, VS4, VS6 (анодная группа). При этом за счет
наличия угла сдвига между импульсами управления двух комплектов
тиристоров, близкого к π, один из них работает в выпрямительном
режиме и проводит ток, а другой, работая в инверторном режиме, ток
не проводит. Для обеспечения такого управления между средними
значениями ЭДС выпрямителя и инвертора должно существовать
соотношение
, однако за счет разности мгновенных значений
ЭДС между комплектами тиристоров протекает так называемый
уравнительный ток. Для его ограничения в схеме, приведенной на рис.
4, а, предусмотрены уравнительные реакторы L1 и L2.
Н.И. Усенков. Электриче
ский привод

Схемы вентильных преобразователей,
обеспечивающие изменение направления
потока энергии
В автоматизированных электроприводах
регулировать скорость приводного двигателя.
требуется
При использовании машин постоянного тока возникает
задача не только регулирования скорости вращения, (за
счет изменения величины питающего напряжения), но и
изменения направления вращения (реверс). Для этого
необходимо изменение как полярности напряжения на
нагрузке, так и направления тока в нагрузке.
Эта задача решается с помощью специального
преобразователя постоянного тока без применения
контактной аппаратуры,
так называемого реверсивного
Н.И. Усенков. Электриче
преобразователя постоянного
тока, состоящего
ский привод

состоящего из двух комплектов вентилей, каждый из которых
обеспечивает протекание тока через нагрузку только в одном
направлении.
Все существующие схемы реверсивных вентильных преобразователей
можно разделить на два класса:
перекрестные («восьмерочные») схемы и
встречно –параллельные схемы.
В перекрестных схемах (рисунок а – нулевая и б – мостовая)
трансформатор имеет две группы изолированных вентильных обмоток,
от которых питаются два комплекта вентилей.
Во встречно-параллельных схемах (рисунок в) необходима лишь одна
группа вентильных обмоток трансформатора.
В реверсивных
являются:
преобразователях
наиболее
трехфазная нулевая;
дважды трехфазная с уравнительным
реактором и
Н.И. Усенков. Электриче
ский привод
распространенными

Трехфазный реверсивный преобразователь
с нулевым выводом
A
T1
C
Uсинхр
N
a
UZ1
B
b1
1
c1
a2
b
c2
2
Iур2
Lур1
Id1
Udα
Iур2
VS1…
VS3
UZ2
Lур2
Id2
M1
Н.И. Усенков. Электриче
LM1
ский привод
VS4…
VS6
СИФУ 1
СИФУ 2
Uсинхр
Uзс

Трехфазные схемы выпрямителей применяются при индуктивной
нагрузке для питания обмоток возбуждения электрических машин,
шестифазные
для питания якорных цепей двигателя,
двенадцатифазные особо мощных электроприводов.
Работа реверсивного преобразователя
Предположим, что в начальный момент времени машина
вращалась по часовой стрелке со скоростью n об/мин. При этом она
развивала противо-ЭДС Eяк и через якорную цепь протекал ток I
(рисунок
). Питание машины осуществлялась от первого
вентильного комплекта преобразователя UZ1, работающего в
выпрямительном режиме. Для снижения скорости вращения
машины надо уменьшить подводимое к ней напряжение питания, то
есть необходимо увеличить угол управления тиристорами
VS1,VS2,VS3 выпрямителя UZ1.
Н.И. Усенков. Электриче
ский привод

При этом из-за инерции двигателя его противо-ЭДС Eяк не может
резко изменится и оказывается больше, чем напряжение Ud1 на
выходе
преобразователя
(на
якоре
двигателя).
Вентили
преобразователя UZ1 быстро запираются, и ток нагрузки снижается
до нуля. Но на зажимах якорной цепи электрической машины,
вращающейся по инерции, сохраняется противо-ЭДС Eяк, что
позволяет полезно использовать кинетическую энергию вращающего
привода, преобразовав ее в электрическую, и одновременно быстро
затормозить электрическую машину.
Для этого требуется перевести первый вентильный комплект в
инверторный режим, то есть увеличить угол α1 > 90°. Но первый
комплект UZ1 преобразователя нельзя использовать в инверторном
режиме, так как необходимо иметь на машине обратную полярность
напряжения Ud1. Поэтому в инверторный режим переводится второй
вентильный комплект UZ2 (α2 > 90°), выход которого подключен к
нагрузке параллельно выходу первого комплекта UZ1. Машина
работает в генераторном режиме, поэтому скорость вращения ее
падает. Следовательно, снижается и противо-ЭДС Eяк, являющаяся
питающим напряжениемН.И.
дляУсенков.
второгоЭлектриче
комплекта UZ2, работающего в
инверторном режиме. ский привод

n
Торможени
Двиг. е
Разгон
режим
Двиг.
режим
0
t
Реверс
I
E
0
t
<90
UZ2
В
И
>90
И
>90
<90
UZ1
В
UZ1
<90
В
Рис 1.2. Диаграмма режимов работы
электрической машины постоянного тока
Н.И. Усенков. Электриче
ский привод

При остановке электрической машины (Eяк=0; n=0) можно
перевести второй комплект вентилей UZ2 в выпрямительный
режим (α2<90°). При этом электрическая машина опять переходит
в режим двигателя и питается от второго комплекта вентилей
UZ2.
Направление
вращения
машины
изменяется
на
противоположное (реверс двигателя), и она снова начинает
разгоняться (от n=0 до заданной частоты вращения, например, до
n=nном в третьем квадранте координат электропривода: n и I или n
и M).
Если вновь требуется осуществить реверс, то увеличивается
угол α2 второго комплекта вентилей UZ2, его вентили запираются.
Первый комплект вентилей UZ1 переводится в инверторный
режим (α 1>90°), направление тока якоря Id меняется на обратное,
электрическая машина работает в генераторном режиме до
полной остановки двигателя.
В дальнейшем с уменьшением угла α1>90° первый комплект
вентилей UZ1 переводится в выпрямительный режим и
осуществляется разгон двигателя до заданной частоты вращения.
Н.И. Усенков. Электриче
ский привод

Регулировочная характеристика реверсивного
преобразователя
Udα
Ud0
Udα1
α1
Режим
выпрямителя
0
Udβ1
π
π/2
Режим
инвертора
α2
β1
-Ud0
Udβ
Н.И. Усенков. Электриче
ский привод
α
β

При равенстве средних значений напряжений на
выходе UZ1 и UZ2 получаем выражение
Udocosα1= Udocosβ2.
Следовательно, необходимо, чтобы α1= β2. Так как при
инверторном режиме β =180°- α, то условие равенства
средних значений напряжений в уравнительном контуре
можно представить в виде α1+ α2 =180°, где α1 и α2 – углы
управления тиристорами первого и второго комплектов
вентилей, отсчитываемые от точки естественного
отпирания тиристоров.
Н.И. Усенков. Электриче
ский привод

Внешние характеристики реверсивного
преобразователя
Внешние характеристики выпрямительного и инверторного
комплектов в этом случае являются продолжением одна
другой и дают линейную результирующую внешнюю
характеристику реверсивного преобразователя
Udα
β1
α1
β1 > β
2
α2 > α
β3 > β
2
1
α3 > α
2
Режим
инвертора
Режим
выпрямителя
0
Н.И. Усенков. Электриче
ский привод
Id

Совместное управление вентильными
комплектами
Если импульсы управления подаются одновременно на
вентили обоих комплектов UZ1 и UZ2, а углы управления
тиристорами соответствуют условию
α1 + α2 = π,
управление
вентильными
согласованным.
группами
Н.И. Усенков. Электриче
ский привод
называют

Раздельное управление вентильными
комплектами
Для того, чтобы получить электропривод, работающий во всех четырех
квадрантах поля: ω – I или ω - М, необходимо использование реверсивного
тиристорного преобразователя, обеспечивающего протекание тока якоря
двигателя в обоих направлениях.
Реверсивные преобразователи содержат две группы тиристоров,
включенных встречно-параллельно друг другу.
В этой схеме два вентильных комплекта UZ1 и UZ2, собранные каждый по
трехфазной мостовой схеме, включены параллельно друг другу с
противоположной полярностью на стороне выпрямленного тока.
Подавать отпирающие импульсы одновременно на обе группы тиристоров
нельзя, так как произойдет короткое замыкание. Поэтому в данной схеме
может работать только
Н.И. Усенков. Электриче
ский привод

одна группа тиристоров UZ1 или UZ2; другая группа
тиристоров должна быть закрыта (отпирающие импульсы
сняты).
Таким образом, реверсивные преобразователи с
раздельным управлением - это такие преобразователи, в
которых управляющие импульсы приходят только на один
из комплектов вентилей, проводящих ток. Импульсы
управления на второй комплект вентилей в это время не
подаются, и его вентили заперты. Реактор Lур в схеме
может отсутствовать. См Горби243с
При раздельном управлении вентилями включается
только та группа тиристоров, которая в данный момент
должна проводить ток в нагрузке. Выбор этой группы
зависит от направления движения привода («Вперед» или
«Назад») и от режима работы привода: двигательный
режим или рекуперативное торможение.
Н.И. Усенков. Электриче
ский привод

Таблица 1 – Выбор вентильного комплекта
Режим работы ЭП
Двигательный
Тормозной
Направление
движения
«Вперед»
UZ1
UZ2
«Назад»
UZ2
UZ1
В системах управления ЭП выбор и включение нужной группы
тиристоров производится автоматически посредством логического
переключающего устройства ЛПУ, принцип построения которого
показан на рисунке.
Н.И. Усенков. Электриче
ский привод

Примем направление тока якоря при работе «Вперед» в
двигательном режиме за положительное. При положительном сигнале
задания скорости ωзад, соответствующем движению
«Вперед», и
сигнале ошибки по скорости, которая в двигательном режиме также
будет (ωзад- ω)≥0, сигнал, поступающий на ЛПУ от регулятора тока,
будет иметь знак (+). В соответствии с этим ЛПУ включит электронный
ключ QS1, который подает отпирающие импульсы на тиристорную
группу UZ1. Угол управления α1 устанавливается системой
автоматического регулирования в соответствии с сигналом выхода
регулятора тока РТ. Обе СИФУ (1) и (2) работают согласованно так,
что сумма углов сумма
α1 + α 2 = π .
(1)
Таким образом, на тиристорную группу, работающую в
выпрямительном режиме, подаются отпирающие импульсы с углом α1 =
0… π/2. При этом СИФУ2 вырабатывает импульсы
Н.И. Усенков. Электриче
ский привод

управления с углом α2 = π - α1, то есть с углом управления,
соответствующем
инверторному
режиму
работы
преобразователя UZ2. Однако, поскольку электронный ключ
QS2 разомкнут, импульсы управления на тиристоры группы
UZ2 не поступают.
Преобразователь UZ2 закрыт, но
подготовлен к работе в инверторном режиме.
Такой
принцип
согласованного
управления
вентильными комплектами, определяемый (1), позволяет
согласовать механические характеристики привода в
двигательном и тормозном режимах, что показано на
рисунке.
При
необходимости
торможения
привода
уменьшается сигнал задания скорости ωзад. Ошибка по
скорости меняет знак (ωзад - ω) <0, и на входе ЛПУ знак
сигнала изменяется с (+) на (-), в соответствии с чем
Н.И. Усенков. Электриче
ский привод

Отключается контакт QS1 и включается контакт QS2. Однако
включение контакта QS2 происходит не сразу, а с некоторой
выдержкой времени, которая необходима, чтобы ток якоря
уменьшился до нуля и тиристоры UZ1 восстановили запирающие
свойства. Спадание тока до нуля контролируется датчиком тока ДТ и
нуль-органом НО (в других схемах для этой цели используются
датчики проводимости вентилей).
Когда ток спадет до нуля, по прошествии некоторой выдержки
времени, включается ключ QS2 и вступает в работу преобразователь
UZ2, уже подготовленный к работе в инверторном режиме. Привод
переходит в режим рекуперативного торможения, Общее время
переключения тиристорных групп составляет 5 – 10 мс, что является
допустимым для обеспечения высокого качества управления ЭП.
При работе в двигательном режиме в направлении «Назад» знак
задания скорости отрицателен, а абсолютное значение
Н.И. Усенков. Электриче
ский привод

ошибки по скорости |ωзад - ω | положительно, поэтому на
вход ЛПУ поступает отрицательный сигнал, и включается
ключ
QS2.
Работает
преобразователь
UZ2
в
выпрямительном режиме. Логические правила работы
ЛПУ иллюстрируются таблицей 2.
Находят применения также и другие схемы ЛПУ.
Механические характеристики реверсивного привода ТП-Д
с раздельным управлением показаны на рисунке.
При непрерывном токе
описываются уравнением (1).
якоря
двигателя
они
В режиме прерывистых токов в области малых
значений момента линейность характеристик нарушается.
В современных замкнутых по току и скорости системах
регулирования, благодаря применению адаптивных
регуляторов, удается линеаризировать механические
характеристики ЭП иН.И.
приУсенков.
малыхЭлектриче
значениях момента.
ский привод

Таблица 2 – Логика работы ЛПУ
Знак
Знак
Знак
Включен
Работает
Режим
ωзад
|ωзад- ω|
на входе
ключ
работы
ЛПУ
QS
преобразовате
ль
+
+
+
QS1
UZ1
+
-
QS2
UZ2
-
+
-
QS2
UZ2
-
-
+
QS1
UZ1
Н.И. Усенков. Электриче
ский привод
электропривод
а
Двигательны
й
Тормозной
Двигательны
й
Тормозной

Внешняя характеристика выпрямителя
Udα
Ud0
Ud1
0
Id
I d1
I к.з
Н.И. Усенков. Электриче
ский привод

7.Электропривод и автоматика промышленных установок и технологических комплексов

Техническая реализация
Н.И. Усенков. Электриче
ский привод

Н.И. Усенков. Электриче
ский привод

Н.И. Усенков. Электриче
ский привод

Задание 1. Определить значения приведенных моментов J и Мс при
подъеме груза (рисунок 1), если известно: Jд=3,2 кг м2; Jр.о.=3,6 кг м2;
передаточное число редуктора р=0,96; КПД исполнительного органа
(барабана) Б=0,94; угловая скорость двигателя ω=112 рад/с; скорость
подъема груза v=0,2 м/с; масса груза m=1000 кг.
Пояснение.
Приведенный статический момент:
Mc
F p . o . p . o .
p Б Д
m g p.o.
p Б Д
1000 9,81 0,2
19,41H m
0,96 0,94 112
Приведенный момент инерции J:
J
J Д J ро
i p2
m(
2 3,2 3,6
0,2 2
1000
) 3,3 кг м2.
2
Д
112
6,14
Н.И. Усенков. Электриче
ский привод

Jд, nп, iп, п
М, д, Jд
Д
ПУ
Мpo, po, Jpo
РО (б), и схема 3.Ознакомиться с
MatLab7/Simulink3.
библиотекой
основных
блоков
в
программе
4.Составить блок-модель лабораторной установки для проведения
исследования в соответствии с заданной темой и дать краткое описание
используемых функциональных устройств и виртуальных измерительных
приборов.
5.Изучить виртуальную лабораторную установку и ввести исходные
данные в диалоговые окна программы. Сформулировать план проведения
эксперимента.
6.После выполнения работы составить отчет по структуре:
Название работы и цель работы;
Описание лабораторного стенда;
Анализ осциллограм экспериментальных зависимостей;
Выводы.
Н.И. Усенков. Электриче
ский привод

Работа № N. Исследование электропривода по
структуре «Выпрямитель-преобразовательасинхронный двигатель»
Блок-модель электропривода с асинхронным двигателем
Н.И. Усенков. Электриче
ский привод

Результаты моделирования
Н.И. Усенков. Электриче
ский привод

Н.И. Усенков. Электриче
ский привод

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

РОССИЙСКОЙ ФЕДЕРАЦИИ
ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИАНАЛЬНОГО ОБРАЗОВАНИЯ
УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ

ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

В.И.БАБАКИН

Курс лекций по дисциплине:

«Автоматизированный электропривод типовых

производственных механизмов и технологических

комплексов».
Часть 2.

Уфа 2007

1.АЭП с асинхронным двигателем 4

1.1АЭП с АД с реостатным регулированием 4

1.2АЭП с АКЗД с регулируемым напряжением,подводимым к статору АД 5

2.Современное состояние АЭП с двигателями переменного тока 7

2.1Проблемы синтеза и управления АЭП 7

3.Автоматизированный асинхронный электропривод с использованием синхронных

Электромашинных преобразователей частоты 9

4. Автоматизированный асинхронный электропривод с использованием асинхронных

Электромашинных преобразователей частоты 11

5.Автоматизированный электропривод с двигателем переменного тока со статическими преобразователями частоты (СПЧ) 11

5.1Преобразователь частоты с звеном постоянного тока 12

6.Автономные инверторы (АИ)……………………………………………………………… 13

7.АЭПТ с ЧП имеющий в структуре управляемый выпрямитель………………………… .14

8.Регулирование скорости в АЭП с ПЧ с УВ……………………………………………… ...17

9.Пуск в АЭП с ПЧ с УВ…………………………………………………………………… …18

10.Торможение в АЭП с УВ………………………………………………………………… ..19

10.1.Торможение противовключением (ТП)……………………………………………… ..19

10.2.Динамическое торможение……………………………………………………………… 19

10.3.Реверс……………………………………………………………………………………. ..20

11.Преимущества и недостатки АЭП с ПЧ с УВ…………………………………………… .20

12. Автоматизированный электропривод с использованием ПЧ с ШИР……………… ….20

13.Регулирование скорости, пуск торможение в АЭП с ШИР…………………………… ...21

13.1 Регулирование скорости в АЭП с ШИР……………………………………………… …21

13.2 Пуск в АЭП с ШИР…………………………………………………………………… ….22

13.3 Торможение в АЭП с ШИР……………………………………………………………… 22

14 Автоматизированный электропривод с использованием ПЧ с ШИМ…………………...22

15 Принцип действия ПЧ с ШИМ……………………………………………………………..23

16 Принципиальные схемы ПЧ с ШИМ………………………………………………………24

17 ПЧ с ШИМ на базе незапираемых тиристоров…………………………………………....25

18 Элементная база современных частотных преобразователей…………………………....26

18.1 Силовые фильтры…………………………………………………………………………27

18.2Характеристики современных мощных силовых ключей с двухсторонним теплоотводом

19 Припинциальные схемы ПЧ на базе IGBT транзисторов………………………………...29

20 Регулирование скорости в АЭП с ПЧ с ШИМ…………………………………………….29

21 Пуск в АЭП с ПЧ с ШИМ…………………………………………………………………..29

22 Торможение в АЭП с ПЧ с ШИМ……………………………………………………… .29

23 Аварийные режимы в АЭП с ПЧ с ШИМ…………………………………………………29

24 Влияние длины монтажного кабеля на перенапряжения на зажимах двигателя……….30

25 Принципы и основы векторного управления……………………………………………...34

26 Реализация векторного управления………………………………………………………..36

27 Автоматизированный электропривод переменного тока с непосредственным преобразо-

Ванием частоты (НПЧ)…………………………………………………………………… ..38

28 Автоматизированный электропривод переменного тока в каскадных схемах………….40

29 Автоматизированные электроприводы с электрическими электромашинными каскадами……………………………………………………………………………………… 42

30 Автоматизированные электроприводы с электромеханическими электромашинными каскадами………………………………………………………………………………………..43

31 Автоматизированные электроприводы с асинхронно-вентильными каскадами (АВК).44

32 Автоматизированные электроприводы переменного тока с машинами двойного пита-

Ния……………………………………………………………………………………………. .45

33 Автоматизированные электроприводы переменного тока с машинами двойного питания в синхронном режиме………………………………………………………………… 46

34 Автоматизированные электроприводы переменного тока с машинами двойного пита-

Ния в асинхронном режиме…………………………………………………………………..48

35 Автоматизированные электроприводы переменного тока с вентильным двигателем …50

36 Автоматизированные электроприводы переменного тока следящего типа……… …….52
1. АЭП с асинхронным двигателем
1.1 АЭП с АД с реостатным регулированием.

Эти схемы применяются для АД с фазным ротором.

Принцип действия: Изменяя активное сопротивление цепи ротора, мы тем самым воздействуем на скольжение, при этом изменяется угловая скорость.

Один из важнейших показателей качества регулирования – плавность. В данном случае зависит от числа ступеней добавочного сопротивления вводимого в цепь ротора, которое в свою очередь ограничивается стандартной аппаратурой управления с помощью релейно-контакторных схем. Увеличение числа ступеней повлечет за собой увеличение числа реле и контактов, что в свою очередь приведет к уменьшению быстродействия и надежности системы в целом. Кроме того, такие электроприводы обладают низкими энергетическими показателями, невысоким КПД в области глубокого регулирования, при значительном увеличении добавочного сопротивления резко уменьшается жесткость характеристики что скажется на устойчивости работы электропривода.

С целью увеличения плавности регулирования применяют импульсное параметрическое регулирование. Сущность этого метода заключается в попеременном введении и выведении добавочного сопротивления в цепи ротора, при этом среднее значение равно:

где t 1 - длительность замкнутого состояния ключа;

T 2 - длительность разомкнутого состояния ключа.

рис.2

ω будет изменятся плавно в приделе между двумя граничными характеристиками ε=1 и ε=0

Диапазон регулирования скорости в ЭП с реостатным регулированием ограничивается:


  1. Большими потерями мощности (низкий КПД)

  2. Низкой стабильностью(Д=1,5÷1).
^ 1.2 АЭП с АКЗД с регулируемым напряжением, подводимым к статору АД.
Принцип действия таких электроприводов заключается в том, что при уменьшения напряжения, подводимого к статору пропорционально квадрату напряжения снижается электромагнитный момент и уменьшается скорость вращения ω.
Регулирование осуществляется с помощью регуляторов напряжения, включаемых в цепь статора. При этом различают два способа регулирования:

  • импульсное;

  • непрерывное.

До недавнего времени в основном использовались импульсные способы регулирования.

Простейшая принципиальная схема импульсного регулирования:
рис.3
При этом частота замыканий размыканий соизмерима с частотой сети f ≤ 200 Гц. При изменении скважности управляющих импульсов изменяется действующее значение напряжения:
При ε=1 двигатель работает на естественной механической характеристике, при этом ключи К постоянно замкнуты. По мере уменьшения ε угловая скорость уменьшается. При этом уменьшается критический момент М КР, как следствие уменьшение перегрузочной способности (жесткости) рабочей части механической характеристики. При малых значениях скважности, т.е. на малых скоростях привод работает неустойчиво.

Недостатки:


  • Низкие энергетические показатели, что связано с увеличением напряжения и скорости, а также с переходными электромагнитными процессами, вызванными включением выключением обмоток статора двигателя.

  • Такие электропривода могут работать только в продолжительном режиме, т.к. не обеспечивают кратковременного запуска и остановки двигателя.
Несколько лучшими, в этом плане, показателями обладают электропривода с импульсным регулирование напряжения и импульсным чередованием фаз.

КН включается на интервалах выключенного состояния ключей КВ, при ε=0 импульсов управляющих ключами КВ. ЭП будет работать в режиме торможения противовключением. Семейство механических характеристик в таких ЭП будут боле жесткими в рабочей части (перегрузочная способность ниже).

Отличие механической характеристики при импульсном регулировании напряжения и импульсным чередованием фаз (в рабочей части электропривод работает более устойчиво). При очень малых значениях ε характеристики переходят в область торможения противовключением, что позволяет быстро остановить двигатель. Такие электроприводы для повторно-кратковременных режимов, но эти электроприводы имеют еще более низкие энергетические показатели, т.к. наложение двигательного и тормозного режимов вызывает практически непрерывные электромагнитные переходные процессы, сопровождающиеся большими потерями мощности.

Недостатки:

Уменьшение напряжения питания при постоянной мощности на валу двигателя приведет к уменьшению напряжения на зажимах ротора, увеличению тока ротора, уменьшению коэффициента мощности двигателя и уменьшения КПД.

Показатели качества:


  1. Низкие энергетические показатели;

  2. Низкая стабильность регулирования:

  3. Диапазон регулирования Д=1,5÷1;

  4. Плавность высокая;

  5. Направление однозвенное “вниз”;
Целесообразно регулировать при М= const т.к. это частично позволяет освободиться от первого недостатка.

В настоящее время широкое распространение получили ЭП с непрерывным регулированием напряжения:


  • РН-АД;

  • ТРН-АД.
Такие электроприводы обладают значительно лучшими энергетическими показателями, чем ЭП с ИРН, но все остальные показатели такие же.
В последнее время такие электроприводы получили неоправданно широкую рекламу. Предлагается использовать их для механизмов, работающих в повторно кратковременном режиме. Регулирование ω в системе ТРН-АД осуществляется с помощью изменения напряжения на зажиме статора путем изменения угла отпирания тиристоров. Рис.5


^ Преимущества ЭП по системе ТРН-АД: По первоначальным затратам на 30-40% дешевле, чем ЭП с частотным преобразователем; на 20-50% снижены затраты на тех обслуживание.

^ Недостатки ЭП по системе ТРН-АД: Низкий диапазон регулирования Д=2÷1.

Этот недостаток, в какой то степени может быть устранен при использовании АЭП с регулируемой ЭДС в обмотке статора, т.е. регулированием не напряжения, а ЭДС.

^ 2. Современное состояние АЭП с двигателями переменного тока.

2.1 Проблемы синтеза и управления АЭП.
Объект управления –


  1. ЭД (электромеханический преобразователь);

  2. СП (силовой электрический преобразователь);

  3. ИП (измерительный преобразователь).

1) ЭД (электромеханический преобразователь).

Наиболее широкий класс ЭД, используемых в современном электроприводе АКЗД общепромышленного назначения. Эти двигатели предназначены для использования в регулируемых электроприводах, для прямого включения в промышленную сеть. В основном изменения в этой области носят характер некоторых конструктивных усовершенствований электродвигателя. Разрабатываются и серийно производятся специальные модификации АКЗД, предназначенные для использования в частотно регулируемом электроприводе (фирмой Siemens разрабатываются и серийно выпускаются в течении пяти лет АКЗД для использования при пониженных и при повышенных частотах питания 500-1000 Гц) . Кроме того наблюдается увеличение производства СД с возбуждением от постоянных магнитов (бесконтактные). Эти ЭД обладают улучшенными массогабаритными и ценовыми показателями, и не уступают по технико-энергетическим показателям. Среди перспективных ЭД – индукторный двигатель, который по утверждению разработчиков имеет значительно лучшие технические и энергетически характеристики и требует очень простого силового преобразователя (себестоимость электропривода значительно ниже). Синхронно-реактивный электродвигатель имеет массогабаритные показатели находящиеся в промежутке между АД и СД и при этом значительно более высокую энергетическую эффективность при значительно меньшей стоимости.
2) СП (силовой электрический преобразователь);

В области СП в электроприводе с двигателями постоянного тока в настоящее время в основном используются преобразователи имеющие структуру выпрямитель - АИН. Причем если до 2000 г. Требования к качеству выпрямления не регламентировалось, то в настоящее время появился ряд нормативной документации, которая строго регламентирует наличие в структуре СП выпрямительных устройств. Это стандарты IEEE-519, МЭК555 – интеграционные стандарты; ГОСТ 13109. Для улучшения качественных показателей современных СП, в частности для улучшения качества электропотребления, а именно повышение коэффициента мощности в настоящее время применяют выпрямители на полностью управляемых силовых ключах со стабилизацией выходного напряжения. Схемы с дополнительной индуктивностью, схемы с коммутирующим входным ключом реализуются по смарт технологии. Однако более эффективными и дешевыми представляются СП с неуправляемыми выпрямителями. В СП в настоящее время используется современная база, в которой используются современные электронные приборы, такие как тиристоры MGT или IGST, а также полностью управляемые транзисторы IGBT. Кроме того в настоящее время ведутся разработка транзисторов с разрешающей способностью по напряжению 6-10 кВ.

В настоящее время наиболее перспективным режимом работы СП является режим высокочастотной ШИМ с частотой модуляции 20 кГц и векторным управлением (воздействие через моментообразующую и потокообразующую составляющую тока статора). Этот режим является наиболее благоприятным для двигателей с номинальной частотой 500-1000 Гц т.к. в этом случае проблема согласования частоты модуляции с частотой питающего двигатель напряжения решается значительно проще. В настоящее время перспективным видом СП является также НПЧ, имеющий матричную структуру с матричной системой управления. Преимуществом таких преобразователей является отсутствие реактивных элементов, т.е. емкостей и индуктивностей в силовой схеме, практически синусоидальность формы выходного напряжения и тока, а также возможность работы в режиме опережающего cosφ.
3) ИП (измерительный преобразователь).

В качестве первичных измерителей в настоящее время используют традиционно известные средства, к которым можно отнести серийно выпускаемые датчики тока и напряжения, датчики Холла, тахогенераторы, фотоимпульсные и кодовые датчики перемещения и положения, электромагнитные револьверы, сельсины и т.д. Объем использования таких современных датчиков как емкостные, лазерные практически равен нулю. Наиболее перспективным видом ИП являются косвенные измерители, в которых на базе легко измеряемых параметров, таких как активное и индуктивное сопротивление двигателя, скорость и положение ротора и т.д. При использовании таких измерительных систем отпадает необходимость в использования большого количества датчиков и в частности датчика скорости вращения. Такие системы измерения называются безсенсорными.
^ Задачи управления электроприводом:

Наиболее часто встречающимся видом задач управления является задача непосредственного регулирования скорости вращения ЭП. Кроме того, имеются специально регулируемые приводы, которые выполняют задачи регулирования электромагнитного момента, мощности, ускорения, регулирование положения ротора, регулирование какого-либо технологического параметра. Кроме того имеются задачи стабилизации, слежения, позиционирования, обеспечение инвариантности (заключается в обеспечении независимости или слабой зависимости от неконтролируемых возмущений), обеспечении автономности (обеспечение независимости какого-либо параметра объекта от остальных параметров.

Синтез управления ЭП сводится к нахождению достаточно обусловленной модели ЭП, которая в настоящее время представляет собой в большинстве случаев систему уравнений Кирхгофа по второму закону эля электромагнитных цепей ЭД и СП. Обычно эти уравнения записываются для эквивалентной двухфазной машины, а также системы уравнений Ньютона для механических цепей ЭП.

Основная проблема при создании модели ЭП:


  • Учет насыщения магнитной цепи двигателя;

  • Учет упругих механических связей;

  • Учет нелинейных связей.
^ 3. Автоматизированный асинхронный электропривод с использованием синхронных электромашинных преобразователей частоты.
АЭП с электромашинными ПЧ обладают важным преимуществом: совместимость с энергосистемой, т.е. не загрязняют сеть.

Различают два вида электромашинных ПЧ:


  1. Электромашинный синхронный ПЧ (ЭМСПЧ);

  2. Электромашинный асинхронный ПЧ (ЭМАСПЧ).

АЭП с электромашинной СПЧ.

Основным элементом такой системы является трехфазный синхронный генератор согласованный по мощности с приводным АД. При этом выходное напряжение и частота определяется угловой скоростью вала генератора и величиной магнитного потока возбуждения. При изменении скорости будет изменятся выходное напряжение. Если принять напряжение на зажимах фазы статорной обмотки очевидно, что при Ф= const с увеличением скорости вращения вала одновременно с увеличением частоты будет увеличиваться также действующие значение выходного напряжения. В данном случае можно реализовывать только пропорциональный закон регулирования.



рис.6

В состав ПЧ входят:


  • Основное звено – трехфазный синхронный генератор (Г2);

  • ДПТ НВ (Д2) выход системы Г-Д соединен при помощи вала с СГ;

  • Вспомогательный приводной двигатель АКЗ (Д1) с нерегулируемой скоростью.
Коэффициент пропорциональности С выходного генератора (Г2) можно изменять при изменении I В3 при помощи резистора R 3 . Скорость вращения вала генератора Г 2 , регулируется I В1 генератора (Г1) реостатом R 1 , а также I В2 двигателя (Д2) реостатом R 2. В данной системе возможно регулирование скорости в обе стороны от номинальной. Однако верхний диапазон регулирования скорости используется редко, т.к. двигатель работает при напряжении больше номинального. При полностью выведенных реостатах R 1 и R 2 при этом напряжение и скорость вращения равны номинальному.
Показатели качества:


  • Низкий КПД, высокий cosφ;

  • P уст min = 400 %

Преимущества АЭП с ЭСПЧ:



  • Простота управления.

  • Недостатки АЭП с ЭСПЧ:

  • Низкий КПД;



  • Возможность регулировать только по пропорциональному закону.

^ 4. Автоматизированный асинхронный электропривод с использованием асинхронных электромашинных преобразователей частоты.
Основным элементом такой системы является трехфазный асинхронный генератор согласованный по мощности с приводным АД.

рис.7

Показатели качества:


  • Регулирование двузонное, плавное, стабильное;

  • Низкий КПД, высокий cosφ;

  • P уст min = 200-400 %

Преимущества АЭП с ЭСПЧ:


  • Нет отрицательного влияния на сеть;

  • Простота управления.

Недостатки АЭП с ЭСПЧ:


  • Низкий КПД;

  • Наличие большого количества вращающихся частей;

  • Неудовлетворительные массогабаритные показатели;

  • Возможность регулировать любому закону.

  • Необходимость применения автотрансформаторов.
^ 5. Автоматизированный электропривод с двигателем переменного тока со статическими преобразователями частоты (СПЧ).
В настоящее время СПЧ является наиболее широко применяемым и перспективным видом ПЧ в составе автоматизированного электропривода с двигателем переменного тока.

СПЧ классифицируется по следующим признакам:


  1. По структуре преобразования энергии.

  • СПЧ с непосредственным преобразованием.

  • СПЧ с звеном постоянного тока.

  1. По виду инвертеров подразделяются на:

  • ПЧ с сетноведомыми инверторами.
Силовые ключи таких инверторов запираются при подаче на анод отрицательной полуволны питающего напряжения.

  • ПЧ с автономным инвертором
Силовые ключи таких инверторов запираются либо при разряде коммутирующих конденсаторов, либо с помощью управляющих импульсов.

  • ПЧ с АИН

  • ПЧ с АИТ

  • ПЧ с АИ с поочередной коммутацией (ПЧ с неполным управляющим напряжением)

  • ПЧ с АИ с индивидуальной коммутацией (ПЧ с полностью управляющим напряжением)

^ 5.1 Преобразователь частоты с звеном постоянного тока
В настоящее время этот вид частотных преобразователей является наиболее широко распространенным видом, и при этом в отличии от НП+Ч поставляется в виде самостоятельного элемента электропривода.

рис.8

Где U 1 – трехфазное переменное напряжение с постоянной амплитудой.

П 1 – управляемый или неуправляемый выпрямитель, который предназначен для преобразования входного синусоидального напряжения в выходное постоянное (пульсирующее) напряжение.

Ф – фильтр тока или напряжения предназначен для сглаживания пульсации с выхода выпрямителя.

П 2 – автономный инвертор тока или напряжения, предназначен для преобразования постоянного сглаженного тока или напряжения в переменное трехфазное.

М – трехфазный двигатель переменного тока с короткозамкнутым ротором.
В предлагаемой структурной схеме блок П 1 может работать как в управляемом так и в неуправляемом режимах. При этом в первом случае АИ выполняет функции изменения только выходной частоты преобразователя, а функции воздействия на амплитуду выходного напряжения выполняет выпрямитель. Во втором случае АИ выполняет функции изменения выходной частоты и действующего значения выходного напряжения.

Вариант УВ имеет несомненное преимущество, заключающееся в существенном упрощении системы управления, несмотря на наличие БУВ. При этом вся система значительно удешевляется.

В случае варианта с НВ значительно улучшается совместимость всей системы с электрической сетью. Однако при этом схема управления существенно усложняется и соответственно вся система становится значительно дороже.
^ 6. Автономные инверторы (АИ).
По степени управляемости АИ делятся на:


  • АИ с поочередной коммутацией.

  • АИ с индивидуальной коммутацией.
Схемное отличие этих двух инверторов заключается в том, что в АИ с поочередной коммутацией все силовые ключи являются рабочими. В АИ с индивидуальной коммутацией на каждый рабочий силовой ключ приходится как минимум по одному вспомогательному силовому ключу. Второй вариант как правело более функционален, но при этом значительно более дорогой и менее надежный. В настоящее время практически все АИ относятся к АИ с поочередной коммутацией.

Рассмотрим принцип действия АИ с поочередной коммутацией на примере однофазного АИ у которого запирание силовых ключей осуществляется с помощью коммутирующего конденсатора.

Т1,Т2 – рабочие тиристоры


Пусть в момент времени t = 0 открыт Т2, Т1 закрыт; входное напряжение приложено к Rн2, через промежуток времени равный периоду коммутации Т2 подается отпирающий импульс на Т1. При этом входное напряжение прикладывается к Rн1, а через открытую цепь Т1, Rн1, Rн2 к Т2 прикладывается обратное напряжение с Ск в результате чего Т2 запирается и т.д. Период коммутации –длительность открытия ключа.

По форме выходного напряжения и тока Аи делится на: У АИТ форма выходного напряжения зависит, как от последовательности и длительности коммутации силовых ключей так и от характера нагрузки, а форма выходного тока зависит, только от последовательности и длительности коммутации силовых ключей.

У АИН форма выходного тока зависит, как от последовательности и длительности коммутации силовых ключей так и от характера нагрузки, а форма выходного напряжения зависит, только от последовательности и длительности коммутации силовых ключей.

Внешнее отличие АИТ от АИН: АИТ имеет входной L – фильтр, а входной L или LC фильтр. Кроме того, если в схеме инвертора используются не полностью управляемые силовые ключи, то на каждую фазу АИТ имеется один конденсатор, а у АИН по одному коммутирующему конденсатору на каждый силовой ключ.

Рассмотрим работу однофазного АИТ.

Т1,Т3 – силовые ключи анодной группы

Т2,Т4 – силовые ключи катодной группы

С К – коммутирующий конденсатор

L – входной фильтр.
В первый момент времени в открытом состоянии находятся два накрест лежащих силовых ключа – первый из анодной, второй из катодной группы. В момент отпирания двух других силовых ключей первые два запираются и т.д. При этом если открыты ключи Т3 и Т2 происходит заряд конденсатора в прямом направлении, при открытых ключах Т1 и Т4 происходит перезаряд конденсатора в противоположном направлении.

рис.11

В момент времени t = 0 подается отпирающий импульс на Т1 и Т4. конденсатор Ск в этот момент предварительно заряжен, и при отпирании Т1 и Т4 разряжается на Т3 и Т2 в направлении отрицательной полярности тем самым закрывая Т3 и Т2. в следующий промежуток времени равный периоду коммутации Т1 и Т4 ток через сопротивление нагрузки будет протекать в положительном направлении. По истечении промежутка времени происходит перезаряд конденсатора в противоположное направление. В этот момент подается отпирающий импульс на Т3 и Т2 конденсатор разряжается в направлении отрицательной полярности запирает Т1 и Т4 , ток протекает через Т4, Zн, и открытый Т2 и будет иметь отрицательное направление.

^ 7. АЭПТ с ЧП имеющий в структуре управляемый выпрямитель.
В настоящее время имеется тенденция расширения области применения управляемых выпрямителей в структуре ПЧ, в частности в тех электроприводах, которые по технологическим условиям нуждаются в частом торможении (т.е. для электропривода работающего в повторно-кратковременном режиме S5). Это связано с тем, что УВ обладает таким важным свойством, как двусторонняя проводимость. Это позволяет использовать такой энергетически эффективный вид торможения как рекуперативное. Но негативные свойства УВ полностью устранить невозможно. В настоящее время используются преобразователи, содержащие два входных блока: первый – неуправляемый выпрямитель, участвующий в работе привода в двигательном режиме; второй – УВ, участвующий в работе ПЧ в режиме торможения.

Рассмотрим схему и принцип работы ПЧ с тиристорным УВ и тиристорным АИТ, у которого коммутация силовых ключей осуществляется с помощью коммутирующих конденсаторов.

-рис.12

Входным блоком преобразователя является УВ, построенный по шести-тактной мостовой трехфазной схеме выпрямления. Основной функцией УВ кроме выпрямления является регулирование действующего значения выходного напряжения преобразователя. Для сглаживания пульсации выходного тока выпрямителя использован последовательный L - фильтр.

АИТ состоит из шести силовых ключей, три из которых Т1, Т3, Т5 имеют общий анод и образуют анодную группу; три других Т2, Т4, Т6 Имеют общий катод и образуют катодную группу. Принцип действия АИТ основан на том, что в первый момент времени в открытом состоянии находятся два накрест лежащих силовых ключа: один из анодной группы, второй из катодной группы. Отпирание силовых ключей осуществляется в момент подачи управляющих импульсов от БУИ (многоканальная система управления). При этом последовательность подачи импульсов на каждый вентиль соответствует их порядковому номеру. Запирание силовых ключей осуществляется при разряде какого-либо из трех конденсаторов в направлении отрицательной полярности и также соответствует порядку чередования номеров силовых ключей.

При выходной частоте f 2 = 50Гц преобразователь работает в следующем режиме: промежуток между двумя соседними управляющими импульсами составляет
, длительность открытия каждого ключа будет составлять 120 0 . При этом запирающие конденсаторы С1, С2, С3 должны обладать такой емкостью, чтобы время равное 60 0 удерживать заряд необходимый для запирания очередного ключа.
Работу преобразователя продемонстрируем с помощью диаграммы:


  1. Ток с выхода выпрямителя имеет идеальную выпрямленную форму.

  2. Направление токов в фазах монтажного кабеля преобразователь-двигатель

    • от П к Д - положительным.

    • от Д к П - отрицательным.

рис.13

1. t = 0 Открыт Т1, Т6. Ток цепи протекает через силовой ключ Т1 фазу А кабеля и через открытый Т6 возвращается в фазу С. . При этом предварительно заряжен С3, в промежуток времени 0-60 0 перезаряжается С1, а С3 удерживает свой заряд.

2. t = 60 0 Подается отпирающий импульс на Т2. При этом С3 разряжается на Т6 и запирает его. В промежуток времени 60 0 - 120 0 открыты Т1 и Т2. Ток течет через фазу А к двигателю, а через фазу Б от двигателя к преобразователю. . В этом промежутке времени перезаряжается С2, С1 сохраняет свой заряд.

3. t = 120 0 Подается отпирающий импульс на Т3. При этом С1 разряжается на Т1 и запирает его. В промежуток времени 120 0 - 180 0 открыты Т2 и Т3. Ток течет через фазу Б к двигателю, а через фазу С от двигателя к преобразователю. . В этом промежутке времени перезаряжается С3, С2 сохраняет свой заряд.

4. t = 180 0 Подается отпирающий импульс на Т4. При этом С2 разряжается на Т2 и запирает его. В промежуток времени 180 0 - 240 0 открыты Т3 и Т4. Ток течет через фазу Б к двигателю, а через фазу А от двигателя к преобразователю. . В этом промежутке времени перезаряжается С1, С3 сохраняет свой заряд.

5. t = 240 0 Подается отпирающий импульс на Т5. При этом С3 разряжается на Т3 и запирает его. В промежуток времени 240 0 - 300 открыты Т4 и Т5. Ток течет через фазу С к двигателю, а через фазу А от двигателя к преобразователю. . В этом промежутке времени перезаряжается С2 С1 охраняет свой заряд.

6. t = 300 0 Подается отпирающий импульс на Т6. При этом С1 разряжается на Т4 и запирает его. В промежуток времени 300 0 - 360 открыты Т5 и Т6. Ток течет через фазу С к двигателю, а через фазу Б от двигателя к преобразователю. . В этом промежутке времени перезаряжается С3 С2 охраняет свой заряд.

Чтобы увеличить выходную частоту необходимо уменьшить промежуток между управляющими импульсами для этого увеличиваем угол управления β. Соответственно с законом управления изменится действующее значение выходного напряжения, в частности при пропорциональном законе управления при увеличении частоты угол управления выпрямителем α уменьшится пропорционально увеличению угла β.

Существенным недостатком рассмотренной схемы является необходимость использования конденсаторов большой мощности, необходимой для поддерживания зарядов в промежутке между двумя коммутациями. Частично избавиться от этого недостатка позволяет использование АИ с отсекающими диодами.

рис.14

Здесь в катодной и анодной цепи силовых ключей последовательно включаются отсекающие диоды Д1, Д3, Д5 и Д2, Д4, Д6. Их число равно числу ключей. Эти диоды препятствуют разряду конденсаторов в период коммутации ключа и за счет этого существенно улучшают показания инвертера.

^ 8. Регулирование скорости в АЭП с ПЧ с УВ.
В АЭП с преобразователем частоты и имеющим в структуре управляемый выпрямитель регулирование скорости ω осуществляется в широком диапазоне, при этом обеспечиваются достаточно высокие показатели качества. Регулирование ω осуществляется воздействием на АИ с помощью БУИ при одновременном воздействии на УВ с помощью БУВ в соответствии с законом регулирования. При этом возможно двухзонное регулирование. Однако для механизмов с M C = const , и для механизмов с линейно возрастающей М С регулирование вверх ограниченно тем, что для этого необходимо одновременно с увеличением частоты относительно f НОМ, увеличивать напряжение. В результате чего может произойти пробой изоляции. Регулирование ω вверх применяется значительно реже, чем в диапазоне вниз и в незначительных приделах.

В общем случае семейство регулировочных характеристик будет иметь вид:

рис.15
Показатели качества регулирования:


  1. Стабильность при частотном регулировании высокая т.к. характеристики в рабочей части имеют одинаковую жесткость.

  2. Плавность практически не ограничена.

  3. Высокая экономичность, однако при глубоком регулировании вниз от основной частоты, при котором требуется существенное уменьшение угла управления α выпрямителя и при этом коэффициент мощности привода в целом может оказаться очень низким.

  4. Регулирование в основном осуществляется при M C = const на валу двигателя.

  5. Направление двухзонное, в основном применяется регулирование вниз.

  6. Диапазон регулирования Д=100÷1.

^ 9. Пуск в АЭП с ПЧ с УВ.
Пуск начинается при пониженном напряжении и при минимальной частоте, что соответственно обеспечивает отсутствие броска тока или минимизацию тока и одновременно большие пусковые моменты. При этом инвертор работает с большими периодами коммутации силовых ключей, а УВ с углом управления α = П/2. Энергетическая эффективность пуска в такой системе уменьшается за счет того, что в начале пуска привод потребляет большое количество реактивной составляющей.

рис.16

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

Харьковская национальная академия городского хозяйства

КОНСПЕКТ ЛЕКЦИЙ

по дисциплине

«Автоматизированный электропривод»

(для студентов 4 курса дневной и заочной форм обучения по специальности 6.090603 – «Электротехнические системы электроснабжения»)

Харьков - ХНАГХ - 2007

Конспект лекций по дисциплине «Автоматизированный электропривод» (для студентов 4 курса всех форм обучения специальности 6.090603 – «Электротехнические системы электроснабжения»). Авт. Гаряжа В.Н., Фатеев В.Н. – Харьков: ХНАГХ, 2007. – 104 стр.

СОДЕРЖАНИЕ


Общая характеристика конспекта лекций

Содержательный модуль 1. Автоматизированный электропривод – основа развития производительных сил Украины . . . . . . . . . . . .

Лекция 1.

1.1.

Развитие электропривода как отрасли науки и техники. . . . . .

6

1.2.

Принципы построения систем управления

Автоматизированным электроприводом. . . . . . . . . . . . . . . . . . .


Лекция 2.

1.3.

Классификация систем управления АЭП. . . . . . . . . . . . . . . . . .

13

Содержательный модуль 2. Механика электропривода . . . . . . . . . .

18

Лекция 3.

2.1.

Приведение моментов и сил сопротивления, моментов инерции. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Лекция 4.

2.2.

Уравнение движения электропривода. . . . . . . . . . . . . . . . . . . . .

21

Лекция 5.

2.3.

Механические характеристики двигателя постоянного тока независимого возбуждения. Двигательный режим. . . . . . . . . . .

Лекция 6.

2.4.

Механические характеристики двигателя постоянного тока независимого возбуждения. Режим электрического торможения. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Лекция 7.

2.5.

Механические характеристики двигателя постоянного тока последовательного возбуждения. Двигательный режим. . . . . .

Лекция 8.

2.6.

Механические характеристики двигателя постоянного тока последовательного возбуждения. Режим электрического торможения. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Лекция 9.

2.7.

Механические характеристики асинхронных двигателей. Двигательный режим. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Лекция 10.

2.8.

Механические характеристики асинхронных двигателей. Режим электрического торможения. . . . . . . . . . . . . . . . . . .. . . . .

Лекция 11.

2.9.

Механические и электрические характеристики синхронных двигателей. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Содержательный модуль 3. типовые узлы схем автоматического управления двигателями. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Лекция 12.

3.1.

Принципы автоматического управления пуском и торможением двигателей. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Лекция 13.

3.2.

Типовые узлы схем автоматического управления пуском ДПТ.

77

Лекция 14.

3.3.

Типовые узлы схем автоматического управления торможением ДПТ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Лекция 15.

3.4.

Типовые узлы схем автоматического управления пуском двигателей переменного тока. . . . . . . . . . . . . . . . . . . . . . . . . . . .

Лекция 16.

3.5.

Типовые узлы схем автоматического управления торможением двигателей переменного тока. . . . . . . . . . . . . . . .

Лекция 17.

3.6.

Узлы электрической защиты двигателей и схем управления. . .

98

ОБЩАЯ ХАРАКТЕРИСТИКА КОНСПЕКТА ЛЕКЦИЙ

Автоматизированный электропривод – главный потребитель электроэнергии. В промышленно – развитых странах более 65% вырабатываемой электроэнергии преобразовывается электроприводом в механическую энергию. Поэтому развитие и совершенствование электропривода, являющегося основой энерговооруженности труда, способствует росту производительности и повышению эффективности производства. Знание свойств и возможностей электропривода позволяет инженеру – электрику обеспечить рациональное использование электропривода с учетом требований, как технологических машин, так и систем электроснабжения. Предмет «Автоматизированный электропривод» изучается в седьмом семестре четвертого года обучения. Учебным планом специальности «Электротехнические системы электропотребления» на него выделены четыре кредита. Они заполнены шестью содержательными модулями, которые изучаются во время лекционных и практических занятий, при выполнении лабораторных работ и расчетно-графического задания.

В данном конспекте лекций изложен материал для изучения первых трех содержательных модулей предмета «Автоматизированный электропривод». В первом содержательном модуле автоматизированный электропривод рассматривается как основа развития производительных сил Украины. Во втором изучаются механические характеристики двигателей, показывающие возможности двигателя при работе, как в двигательном режиме, так и в режиме электрического торможения. В третьем модуле изучаются типовые узлы схем автоматического управления двигателем. На основании изученных во втором модуле свойств двигателей, типовые узлы обеспечивают автоматический пуск, торможение и реверс двигателей в функциях времени, скорости и тока при прямом или косвенном контроле названных величин. Конструктивно типовые узлы объединяются в виде станций управления. Долевое участие станций управления в общем количестве использующихся в Украине электроприводов превышает 80%.

Лекция 1.

1.1. Развитие электропривода как отрасли науки и техники

С давних времён человек стремился заменить тяжёлый физический труд, который являлся источником механической энергии (МЭ), на работу механизмов и машин. Для этого на транспорте и на сельскохозяйственных работах, на мельницах и оросительных системах он использовал мускульную силу животных, энергию ветра и воды, а позже – химическую энергию топлива. Так появился привод – устройство, состоящее из трёх существенно различных частей: двигателя (Д), механического передаточного устройства (МПУ) и технологической машины (ТМ).

Назначение двигателя: преобразование энергии различных видов в механическую энергию. МПУ предназначено для передачи МЭ от двигателя к ТМ. Оно не влияет на количество передаваемой МЭ (без учёта потерь), но может изменять её параметры и для согласования видов движения выполняется в виде ременной, цепной, зубчатой или других механических передач.

В технологической машине МЭ используется для изменения свойств, состояния, формы или положения обрабатываемого материала или изделия.

В современных приводах в качестве источника МЭ используются различные электрические двигатели (ЭД). Они преобразуют электрическую энергию (ЭЭ) в механическую и поэтому привод получил название электропривода (ЭП). Его функциональная схема приведена на рис. 1.1. В её состав, кроме названых элементов, входит управляемый преобразователь (П), с помощью которого ЭЭ от сети подаётся к ЭД.

Изменяя сигнал управления преобразователем U у , можно изменять количество ЭЭ, поступающей от сети к ЭД. В результате этого будет изменяться количество МЭ, вырабатываемой двигателем и получаемой ТМ. Это, в свою очередь, приведёт к изменению технологического процесса, эффективность которого характеризуется регулируемой величиной y(t) .

Приоритет в создании электропривода принадлежит русским учёным

Б.С. Якоби и Э.Х. Ленцу, которые в 1834 году изобрели двигатель постоянного тока, а в 1838 году применили его для приведения в движение катера. Однако несовершенство двигателя и неэкономичность источника электрической энергии (гальванической батареи) не позволили этому электроприводу найти практическое применение.

В середине ХІХ века попытки применения ЭП с двигателем постоянного тока для типографских и ткацких машин предпринимались учёными Франции и Италии. Однако система постоянного тока не давала удовлетворительного решения. К 1890 году только 5 % общей мощности двигателей приводов составляли электрические двигатели.

Широкое применение электропривода связано с изобретением в 1889-1891 годах русским инженером Доливо–Добровольским системы трёхфазного переменного тока и трёхфазного асинхронного двигателя. Простота трёхфазной системы, возможность централизованного производства электроэнергии, удобство её распределения привели к тому, что к 1927 году уже 75 % общей мощности двигателей приводов составляли электрические двигатели.

В настоящее время в ведущих отраслях промышленности отношение установленной мощности электроприводов к общей установленной мощности приводов с двигателями всех видов (тепловых, гидравлических, пневматических) приближается к 100 %. Это определяется тем, что ЭД изготавливаются на разнообразные мощности (от сотых долей ватта до десятков тысяч киловатт) и скорости вращения (от долей оборота вала в минуту до нескольких сотен тысяч оборотов в минуту); ЭП работает в среде агрессивных жидкостей и газов при низких и высоких температурах; благодаря управляемости преобразователя, ЭП легко регулирует ход технологического процесса, обеспечивая различные параметры движения рабочих органов ТМ; он обладает высоким к.п.д., надёжен в эксплуатации и не загрязняет окружающую среду.

В настоящее время суммарная установленная мощность электрических генераторов Украины превышает 50 млн. кВт. Для распределения такой мощности на всех уровнях напряжения созданы и электрические сети.

Однако в связи со спадом, в первую очередь, промышленного производства обеспечение реального потребления электроэнергии на Украине осуществляется за счет половины указанной мощности. Такой существенный энергетический запас является надежной основой для развития производственных сил Украины, связанного с внедрением новых энергосберегающих технологий, выпуском современной высокотехнологичной продукции, дальнейшим развитием автоматизации и механизации производства. Решение всех, без исключения, названных задач обеспечивается применением различных систем электропривода, увеличением потребления электроприводом электрической энергии, которое в существующей структуре потребления уже приближается к 70%.

1.2. Принципы построения систем управления автоматизированным электроприводом

Отличительной особенностью современного электропривода является то, что в нём сигнал управления преобразователем U у формируется специальным автоматическим управляющим устройством (АУУ) без непосредственного участия человека. Такое управление называют автоматическим, а электропривод – автоматизированным (АЭП).

Систему управления АЭП, как и любую другую систему автоматического управления, можно рассматривать как систему, воспринимающую и перерабатывающую информацию.

В первом канале формируется информация о требуемом значении регулируемой величины q(t) (задающее воздействие).

Во втором канале с помощью датчиков может быть получена информация о действительном значении регулируемой величины y(t) или других величинах, характеризующих ЭП.

Третий канал может подавать в систему управления информацию о возмущающих воздействиях f i (t) в виде сигнала x i (t) .

В зависимости от количества используемых каналов информации различают три принципа построения систем управления автоматизированным электроприводом:

1) принцип разомкнутого управления;

2) принцип замкнутого управления;

3) принцип комбинированного управления.

Рассмотрим функциональные схемы систем управления АЭП.

Систему управления АЭП, построенную по принципу разомкнутого управления, называют разомкнутой системой. В ней используется только один канал информации – о требуемом значении регулируемой величины q(t) . Функциональная схема такой системы управления приведена на рис.1.2.

В узел суммирования на входе АУУ, как и в предыдущем случае, от КО подаётся информация о q(t) . Стрелка, обозначающая q(t) , направлена в незатемнённый сектор узла суммирования. Это означает, что задающий сигнал поступает в узел суммирования со знаком «+».

Автоматическое управляющее устройство формирует сигнал управления преобразователем U y , используя только информацию о величине задающего воздействия q(t) , которое на вход АУУ подаётся от командного органа (КО). В результате того, что на каждый элемент функциональной схемы оказывают влияние возмущающие воздействия f i (t) , количество поступающей к технологической машине механической энергии, а значит и ход

Рис. 1.2 - Функциональная схема разомкнутой системы управления АЭП

технологической операции будут изменяться. В результате этого действительное значение регулируемой величины y(t) может существенно отличаться от требуемого значения q(t) . Разность между требуемым и действительным значением регулируемой величины в установившемся режиме (когда регулируемая величина y(t) не изменяется во времени) называют ошибкой управления Δx(t)= q(t)– y(t) .

Разомкнутые системы АЭП применяются в том случае, если появление ошибки управления не приводит к существенным потерям в технологии (уменьшению производительности ТМ, снижению качества продукции и др.)

В противном случае, когда появление ошибки управления значительно снижает эффективность технологического процесса, для построения системы управления АЭП используют принцип замкнутого управления. Называют такую систему замкнутой.

В ней используются два канала информации: к информации о требуемом значении регулируемой величины q(t) добавляется информация о действительном значении регулируемой величины y(t) . Функциональная схема такой системы управления приведена на рис.1.3.

Информация о действительном значении регулируемой величины y(t) подаётся в узел суммирования с помощью главной обратной связи (ГОС). Говорят, что ГОС «замыкает» систему управления, соединяя её выход с входом.

Стрелка, обозначающая y(t) , направлена в затемнённый сектор узла суммирования, т.е. сигнал ГОС поступает в узел суммирования со знаком «–» и поэтому ГОС называется отрицательной обратной связью.

Рис. 1.3 - Функциональная схема замкнутой системы управления АЭП.

В узле суммирования в результате алгебраического (с учётом знака) сложения сигналов q(t) и y(t) осуществляется определение величины и знака ошибки управления Δx(t)= +q(t) – y(t) . Сигнал ошибки поступает на вход АУУ. Благодаря этому АУУ, формируя сигнал управления преобразователем П на основании информации о реально существующем соотношении заданного и действительного значения регулируемой величины обеспечивает подачу к ЭД такого количества ЭЭ, а к технологической машине МЭ, что ошибка управления может быть уменьшена до допустимой величины или сведена к нулю.

Кроме ГОС, в системе управления могут быть различные внутренние по отношению к ГОС обратные связи (ВОС). Они контролируют промежуточные параметры системы, что улучшает качество процесса управления. Систему, содержащую только ГОС, называют одноконтурной, а имеющую, кроме ГОС, ещё и ВОС – многоконтурной.

В системе, построенной по комбинированному принципу, объединены две структуры – замкнутая и разомкнутая. К замкнутой системе, которая является основной, добавляется разомкнутая структура по третьему каналу информации x 1 (t) об основном возмущающем воздействии f 1 (t). Функциональная схема системы приведена на рисунке 1.4.

Основным является возмущающее воздействие, которое имеет наибольшую составляющую в величине ошибки управления.


Рис. 1.4 - Функциональная схема комбинированной системы управления АЭП

На рис. 1.4 за основное, принято возмущающее воздействие f 1 (t) . Оно контролируется промежуточным элементом (ПЭ) и информация о нём x 1 (t) подаётся в узел суммирования. Благодаря этому, АУУ вводит в сигнал управления преобразователем составляющую, которая компенсирует влияние f 1 (t) на технологический процесс и уменьшает величину ошибки управления. Влияние других возмущающих воздействий на ошибку ликвидирует основная замкнутая система.

Рассмотренные примеры позволяют дать определение понятию «автоматизированный электропривод».

Автоматизированный электропривод представляет собой электромеханическую систему, в которой, во-первых, осуществляется преобразование электрической энергии в механическую. Посредством этой энергии приводятся в движение рабочие органы технологической машины. И, во-вторых, происходит управление процессом преобразования энергии с целью обеспечения требуемых установившихся и переходных режимов работы ТМ.

Лекция 2.

1.3. Классификация систем управления АЭП

Классификация систем управления АЭП может проводиться по многим признакам: по роду тока двигателя системы разделяются на переменный и постоянный ток. По виду сигналов информации и управления – на непрерывные и дискретные системы. В зависимости от характера уравнений, описывающих процессы управления – на линейные и нелинейные системы. Часто их подразделяют по виду преобразователя или основной аппаратуры: система - генератор постоянного тока –двигатель (Г–Д); система - тиристорный преобразователь – двигатель (ТП–Д); система - тиристорный преобразователь частоты – двигатель (ТПЧ–Д) и др.

Однако наибольшее распространение получила классификация систем управления АЭП по функциям, выполняемым ими в технологических процессах. Таких функций можно выделить пять.

1. Системы управления процессами пуска, торможения, реверса. Среди них, в свою очередь, можно выделить три группы систем.

Системы первой группы разомкнутые. Применяются в электроприводах с асинхронными двигателями с короткозамкнутым ротором. Преобразователь состоит из силового переключающего устройства (СПУ), подключающего двигатель непосредственно к сети. Вся аппаратура управления – релейного действия (контактная или бесконтактная).

Системы управления второй группы выполняются также разомкнутыми. Они применяются в электроприводах с двигателями постоянного тока и асинхронными двигателями с фазным ротором, имеют более сложную структуру СПУ, обеспечивающих ступенчатое переключение резисторов или других элементов в силовых цепях двигателя. Обеспечивают управление автоматическим пуском и торможением, при котором ограничиваются ток и момент двигателя. При ручном управлении СПУ возможно регулирование скорости в малом диапазоне.

Системы третьей группы предназначены для осуществления оптимальных процессов пуска, торможения, реверса. Под оптимальными в данном случае понимают переходные процессы, протекающие за минимальное время. Это обеспечивается поддержанием в процессе пуска и торможения величины вращающего момента двигателя на уровне допустимого значения.

Применяются такие системы в электроприводах с повторно-кратковременным режимом работы, когда время установившегося режима мало, либо вовсе отсутствует. Поэтому появление ошибки управления не будет приводить к потерям в технологии и система может не иметь ГОС.

Замкнутый контур регулирования в такой системе образуется отрицательной обратной связью по моменту (току) двигателя. На рис.1.4 она показана как ВОС. Регулируемой величиной в данном случае становится момент двигателя. Поэтому АУУ формирует сигнал управления П таким образом, чтобы в процессе пуска и торможения момент поддерживался на требуемом уровне или изменялся во времени по необходимому закону.

2. Системы поддержания постоянным заданного значения регулируемой величины (системы стабилизации). Регулируемыми являются величины, характеризующие движение рабочего органа ТМ и вала двигателя – скорость, ускорение, момент, мощность и др.

Системы стабилизации построены по замкнутому принципу и могут иметь функциональную схему, приведенную на рис.1.4. В такой системе задающий сигнал q(t)=const. Поэтому уменьшение регулируемой величины y(t) , вызванное появлением возмущающего воздействия f 1 (t) , будет приводить к увеличению сигнала ошибки управления на входе АУУ. Автоматическое управляющее устройство формирует сигнал управления преобразователем в зависимости от применяемого в нём закона управления (типа регулятора). При пропорциональном законе управления в качестве регулятора используется пропорциональное (усилительное) звено с коэффициентом усиления большим единицы (П – регулятор). Поэтому при увеличении сигнала ошибка на входе П – регулятора будет увеличиваться и сигнал управления преобразователем. В результате этого будет увеличиваться количество ЭЭ и МЭ, что приведёт к увеличению y(t) и уменьшению ошибки управления. Однако она не может быть компенсирована полностью, так как в этом случае сигналы на входе и выходе П – регулятора будут равны нулю, к двигателю не будет подаваться ЭЭ и технологический процесс остановится.

Систему стабилизации, в которой ошибка управления не сводится к нулю, а только лишь уменьшается до допустимой величины, называют статической.

При пропорционально – интегральном законе управления регулятор состоит из двух включённых параллельно звеньев – пропорционального и интегрального (П-И – регулятор). Сигнал ошибки поступает одновременно на вход обоих звеньев. Пропорциональная часть регулятора, как и в предыдущем случае, будет усиливать сигнал ошибки. Интегральная часть регулятора сигнал ошибки будет суммировать, т.е. её выходной сигнал будет увеличиваться до тех пор, пока на входе регулятора имеется сигнал ошибки. Поскольку выходной сигнал регулятора (сигнал управления преобразователем) является суммой выходных сигналов пропорциональной и интегральной частей, то до тех пор, пока на входе регулятора будет сигнал ошибки, его выходной сигнал будет увеличиваться. В результате этого будет увеличиваться количество ЭЭ и МЭ в системе и уменьшаться ошибка управления. Когда сигнал ошибки на входе регулятора станет равным нулю, сигнал на выходе регулятора будет больше нуля, благодаря тому, что интегральная часть регулятора после исчезновения сигнала на её входе запоминает суммарное значение выходного сигнала. К двигателю будет подаваться ЭЭ и технологический процесс будет продолжаться.

Систему стабилизации, в которой ошибка управления сводится к нулю, называют астатической.

При пропорционально – интегрально – дифференциальном законе управления параллельно П, И. – звеньям включают дифференцирующее звено (П – И –Д – регулятор).

Выходной сигнал дифференциальной части прямопропорционален скорости изменения сигнала ошибки управления. Суммируясь с сигналами П, И частей регулятора, он дополнительно увеличивает сигнал управления преобразователем и количество ЭЭ, поступающей к двигателю. Это способствует уменьшению динамической ошибки управления, т.е. разности между требуемым и действительным значением регулируемой величины во время переходного режима в системе.

Применяются системы стабилизации в случаях необходимости особо точного поддержания какого-либо параметра техпроцесса, а также при регулировании скорости двигателя в большом диапазоне.

Для формирования процессов пуска и торможения система стабилизации может иметь внутреннюю обратную связь по моменту двигателя (ВОС на рис. 1.4).

Разомкнутый канал управления по основному возмущающему воздействию уменьшает ошибку управления в статических системах.

3. Следящие системы. Как и системы стабилизации построены по замкнутому принципу. Однако задающий сигнал q(t) в них изменяется по случайному закону и действительное значение регулируемой величины y(t) должно повторять (отслеживать) этот закон.

Применяются в технологических машинах, которые требуют, чтобы при повороте входного вала на любой угол выходной вал «следил» за входным и поворачивался на такой же угол.

Когда положение валов совпадает q(t) = y(t) и ошибка управления равна нулю. При изменении положения входного вала q(t) ≠ y(t) . На входе АУУ появляется сигнал ошибки, преобразователь подаёт ЭЭ на двигатель и выходной вал будет вращаться до тех пор, пока не займёт положение входного.

4. Системы программного управления. Применяются в технологических машинах, имеющих несколько электроприводов. Эти привода могут быть построены как по разомкнутому, так и по замкнутому принципу. Общим для них является устройство, изменяющее заданное значение регулируемой величины каждого электропривода по заранее заданной программе. При этом двигатели отдельных рабочих органов автоматически запускаются, работают с заданными скоростями или реверсируются, а перемещающиеся рабочие органы технологической машины не мешают друг другу.

5. Адаптивные системы. Применяются в тех случаях, когда система, построенная по замкнутому принципу, в результате непредвиденных изменений возмущающих воздействий не способна выполнить свою функцию, например, стабилизацию регулируемой величины.

Для обеспечения адаптации (приспосабливаемости) замкнутой системы в её состав вводят дополнительный контур, основу которого составляет вычислительное устройство. Оно контролирует величину q(t) , y(t) , возмущающие воздействия f i (t) , анализирует работу системы стабилизации и определяет необходимые для адаптации изменения параметров или структуры АУУ.

Лекция 3.

2.1. Приведение моментов и сил сопротивления, моментов инерции и инерционных масс

К механической части электропривода относятся вращающаяся часть двигателя, механическое передаточное устройство и рабочий орган технологической машины.

Вращающая часть двигателя (якорь или ротор) служит источником механической энергии.

С помощью МПУ осуществляется преобразование вращательного движения двигателя в поступательное движение рабочего органа ТМ или за счёт изменения соотношения скоростей входного и выходного валов МПУ согласовываются скорости вращения двигателя и рабочего органа. В качестве МПУ могут использоваться цилиндрические и червячные редукторы, планетарная передача, пара винт – гайка, кривошипно-шатунная, реечная, ременная и цепная передачи.

Рабочий орган ТМ является потребителем механической энергии, которую он преобразует в полезную работу. К числу рабочих органов можно отнести шпиндель токарного или сверлильного станка, движущую часть конвейера, ковш экскаватора, кабину лифта, винт теплохода и др.

Элементы механической части ЭП связаны друг с другом и образуют кинематическую цепь, каждый элемент которой имеет свою скорость движения, характеризуется моментом инерции или инерционной массой, а также совокупностью действующих на него моментов или сил. Механическое движение любого из элементов определяется вторым законом Ньютона. Для элемента, вращающегося вокруг неподвижной оси уравнение движения имеет вид:

Где
– векторная сумма моментов, действующих на элемент;

J – момент инерции элемента;

– угловое ускорение вращающегося элемента.

Для поступательно движущегося элемента уравнение движения имеет вид:

,

Где
– векторная сумма сил, действующих на элемент;

m – инерционная масса элемента;

– линейное ускорение поступательно движущегося элемента.

С помощью этих уравнений может быть учтено взаимодействие любого элемента с остальной частью кинематической цепи. Это удобно осуществлять путём приведения моментов и усилий, а также моментов инерции и инерционных масс. В результате этой операции (приведения) реальная кинематическая схема заменяется расчётной, энергетически эквивалентной схемой, основу которой составляет тот элемент, движение которого рассматривается. Как правило, этим элементом является вал двигателя М. Это позволяет наиболее полно исследовать характер движения электропривода и режим его работы. Зная параметры кинематической схемы, можно определить и вид движения рабочего органа технологической машины.

Приведение моментов сопротивления от одной оси вращения к другой производится на основании баланса мощности в системе.

В ходе технологической операции рабочий орган, вращающийся на своей оси со скоростью ω м и создающий момент сопротивления М см , потребляет мощность Р м см ω м . Потери мощности в МПУ учитываются делением величины Р м на к.п.д. передачи η п . Эту мощность обеспечивает двигатель, вращающийся со скоростью ω и развивающий момент М с , равный приведенному к оси вращения вала двигателя моменту сопротивления М см . На основании равенства мощностей получим:

.

Тогда выражение для определения приведенного момента сопротивления М с имеет вид:

,

Где
– передаточное число МПУ.

Приведение сил сопротивления производится аналогично. Если скорость поступательного движения рабочего органа ТМ равна υ м и в ходе технологической операции создаётся сила сопротивления F см , то с учётом к.п.д. МПУ уравнение баланса мощностей будет иметь вид:

.

Приведенный момент сопротивления М с будет равен:

,

Где
– радиус приведения МПУ.

Каждый из вращающихся элементов кинематической схемы характеризуется моментом инерции J і . Приведение моментов инерции к одной оси вращения основано на том, что суммарный запас кинетической энергии движущихся частей привода, отнесённый к одной оси, остаётся неизменным. При наличии вращающихся частей, обладающих моментами инерции J д , J 1 , J 2 , … J n и угловыми скоростями ω, ω 1 , ω 2 , … ω n можно заменить их динамическое действие действием одного элемента, обладающего моментом инерции J и вращающегося со скоростью ω .

В таком случае можно записать уравнение баланса кинетической энергии:

.

Суммарный момент инерции, приведенный к валу двигателя будет равен:

,

Где J д – момент инерции ротора (якоря) М;

J 1 , J 2 , … J n – моменты инерции остальных элементов кинематической схемы.

Приведение инерционных масс m , движущихся поступательно, осуществляется также на основании равенства кинетической энергии:

,

Отсюда момент инерции, приведённый к валу двигателя будет равен:

.

В результате выполнения операций приведения реальная кинематическая схема заменяется расчётной, энергетически эквивалентной схемой. Она представляет собой тело, вращающееся на неподвижной оси. Этой осью является ось вращения вала двигателя. На него действуют вращающий момент двигателя М и приведенный момент сопротивления М с . Вращается тело со скоростью двигателя ω и обладает приведенным моментом инерции J .

В теории электропривода такая расчётная схема получила название одномассовой механической системы. Она соответствует механической части АЭП с абсолютно жёсткими элементами и без зазоров.

error: